

sangeranalyseR’s tutorial

Why sangeranalyseR

sangeranalseR is an R package that provides fast, flexible, and reproducible workflows for assembling your sanger seuqencing data into contigs.

It adds to a list of already widely-used tools, like Geneious [https://www.geneious.com], CodonCode Aligner [https://www.codoncode.com/aligner/] and Phred-Phrap-Consed [http://www.phrap.org/phredphrapconsed.html];. What makes it different from these tools is that it’s free, it’s open source, and it’s in R.

Main features

	Pure R environment: As far as we know, this is the first package that allows end-to-end analysis of Sanger sequencing data in a pure R environment.

	Automated data analysis: Given appropriately-named input files, a lot of the data analysis can be automated. Once you’ve set up an appropriate workflow for your data, you can run it again in seconds.

	Interactive Shiny apps: Local Shiny apps mean you visualize the data at many levels, view chromatograms, and adjust things like trimming parameters.

	Exporting and importing FASTA files: sangeranalyseR is primarily designed with loading raw ab1 files in mind, but it can also load sequencesin FASTA format. Aligned results and trimmed reads can be written into FASTA file format.

	Thorough report: A single command creates a comprehensive interactive HTML report that provides a huge amount of detail on the analysis.

What sangeranalyseR doesn’t do

One really important feature that sangeranalyseR doesn’t have is the ability to edit bases by hand. R is just not the right language for this. If you need to edit your reads by hand, we suggest doing that in another tool like Geneious [https://www.geneious.com], then exporting your reads as FASTA files and following the instructions for using sangeranalyseR with FASTA input.

User Manual

If you are already familiar with sangeranalyseR and want to have a quick look at function signatures, please refer to sangeranalyseR user manual [https://bioconductor.org/packages/devel/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]

User support

Please go through the Documentation below first. If you have questions about using the package, a bug report, or a feature request, please use the GitHub issue tracker here:

https://github.com/roblanf/sangeranalyseR/issues

Key contributors

The first (and not very good) version of the package was written by Rob Lanfear (at ANU in Australia), in collaboration with Kirston Barton and Sarah Palmer (then both at the University of Sydney). The second and far far better version of the package was written by Kuan-Hao (Howard) Chao at ANU. (This section was written by Rob Lanfear, lest you think Howard wrote it!)

Documentation

	Installation
	System requirements

	Install from Bioconductor

	Install the development version

	Where to go from here ?

	Quick Start Guide
	Super-Quick Start (3 lines of code)

	Step 1: Prepare your input files

	Step 2: Load and analyse your data

	Step 3 (optional): Explore your data

	Step 4: Output your aligned contigs

	Step 5 (optional): Generate an interactive report

	A Reproducible Example
	1. Prepare your input files & loading

	2. Load and analyse your data

	3. Explore your data

	4. Output your aligned contigs

	5. Generate an interactive report

	Beginners Guide
	Step 1: Preparing your input files

	Step 2: Loading and analysing your data

	Step 3: Exploring your data with the Shiny app

	Step 4: Outputting your aligned contigs

	Step 5: Generating an interactive report

	What’s next ?

	Advanced User Guide - SangerRead (AB1)
	Preparing SangerRead AB1 input

	Creating SangerRead instance from AB1

	Visualizing SangerRead trimmed read

	Updating SangerRead quality trimming parameters

	Writing SangerRead FASTA file (AB1)

	Generating SangerRead report (AB1)

	Code summary (SangerRead, ab1)
	(1) Preparing SangerRead AB1 input

	(2) Creating SangerRead instance from AB1

	(3) Visualizing SangerRead trimmed read

	(4) Writing SangerRead FASTA file (AB1)

	(5) Generating SangerRead report (AB1)

	Advanced User Guide - SangerContig (AB1)
	Preparing SangerContig AB1 inputs
	(1) “regular expression matching” SangerContig inputs (AB1)

	(2) “CSV file matching” SangerContig inputs (AB1)

	Creating SangerContig instance from AB1
	(1) “regular expression matching” SangerContig creation (AB1)

	(2) “CSV file matching” SangerContig creation (AB1)

	Updating SangerContig quality trimming parameters

	Launching SangerContig Shiny app
	SangerContig page (SC app)

	SangerRead page (SC app)

	Writing SangerContig FASTA files (AB1)

	Generating SangerContig report (AB1)

	Code summary (SangerContig, AB1)
	(1) Preparing SangerContig AB1 inputs

	(2) Creating SangerContig instance from AB1

	(3) Updating SangerContig quality trimming parameters

	(4) Launching SangerContig Shiny app

	(5) Writing SangerContig FASTA files (AB1)

	(6) Generating SangerContig report (AB1)

	Advanced User Guide - SangerAlignment (AB1)
	Preparing SangerAlignment AB1 input
	(1) “regular expression matching” SangerAlignment inputs (AB1)

	(2) “CSV file matching” SangerAlignment inputs (AB1)

	Creating SangerAlignment instance from AB1
	(1) “regular expression matching” SangerAlignment creation (AB1)

	(2) “CSV file matching” SangerAlignment creation (AB1)

	Updating SangerAlignment quality trimming parameters

	Launching SangerAlignment Shiny app
	SangerAlignment page (SA app)

	SangerContig page (SA app)

	SangerRead page (SA app)

	Writing SangerAlignment FASTA files (AB1)

	Generating SangerAlignment report (AB1)

	Code summary (SangerAlignment, AB1)
	(1) Preparing SangerAlignment AB1 inputs

	(2) Creating SangerAlignment instance from AB1

	(3) Updating SangerAlignment quality trimming parameters (AB1)

	(4) Launching SangerAlignment Shiny app (AB1)

	(5) Writing SangerAlignment FASTA files (AB1)

	(6) Generating SangerAlignment report (AB1)

	Advanced User Guide - SangerRead (FASTA)
	Preparing SangerRead FASTA input

	Creating SangerRead instance from FASTA

	Writing SangerRead FASTA files (FASTA)

	Generating SangerRead report (FASTA)

	Code summary (SangerRead, fasta)
	(1) Preparing SangerRead FASTA input

	(2) Creating SangerRead instance from FASTA

	(3) Writing SangerRead FASTA files (FASTA)

	(4) Generating SangerRead report (FASTA)

	Advanced User Guide - SangerContig (FASTA)
	Preparing SangerContig FASTA input
	(1) “regular expression matching” SangerContig inputs (FASTA)

	(2) “CSV file matching” SangerContig inputs (FASTA)

	Creating SangerContig instance from FASTA
	(1) “regular expression matching” SangerContig creation (FASTA)

	(2) “CSV file matching” SangerContig creation (FASTA)

	Writing SangerContig FASTA files (FASTA)

	Generating SangerContig report (FASTA)

	Code summary (SangerContig, FASTA)
	1. Preparing SangerContig FASTA input

	2. Creating SangerContig instance from FASTA

	3. Writing SangerContig FASTA files (FASTA)

	4. Generating SangerContig report (FASTA)

	Advanced User Guide - SangerAlignment (FASTA)
	Preparing SangerAlignment FASTA input
	(1) “regular expression matching” SangerAlignment inputs (FASTA)

	(2) “CSV file matching” SangerAlignment inputs (FASTA)

	Creating SangerAlignment instance from FASTA
	(1) “regular expression matching” SangerAlignment creation (FASTA)

	(2) “CSV file matching” SangerAlignment creation (FASTA)

	Writing SangerAlignment FASTA files (FASTA)

	Generating SangerAlignment report (FASTA)

	Code summary (SangerAlignment, FASTA)
	(1) Preparing SangerAlignment FASTA inputs

	(2) Creating SangerAlignment instance from FASTA

	(3) Writing SangerAlignment FASTA files (FASTA)

	(4) Generating SangerAlignment report (FASTA)

	Q & A …
	What is a regular expression?

	How to deal with secondary peaks

	How to work with FASTA files for input

	User Manual (functions)
	SangerRead Constructor Parameters

	SangerContig Constructor Parameters

	SangerAlignment Constructor Parameters

	Frequently Asked Questions
	Q: What is the difference between two different trimming methods?

	Conclusion

	License

	Contact

	Help
	Inside help test

Installation

System requirements

	R >= 4.0.0 (current)

	Rstudio (recommended) [https://rstudio.com]

Install from Bioconductor

sangeranalyseR is on Bioconductor 3.12 development [https://bioconductor.org/packages/devel/bioc/html/sangeranalyseR.html] now.

[image: ../_images/bioconductor.png]

Figure 1. sangeranalyseR on Bioconductor 3.12 development.

To install this package, start R (version “4.0”) and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
 install.packages("BiocManager")

The following initializes usage of Bioc devel
BiocManager::install(version='devel')

BiocManager::install("sangeranalyseR")

Install the development version

If you haven’t installed the devtools package before, please install it first:

install.packages("devtools")

Then run the following code in your R console to install the newest version from Github.

library(devtools)

Install the release version
install_github("roblanf/sangeranalyseR", ref = "master")

Install the development version
install_github("roblanf/sangeranalyseR", ref = "develop")
library(sangeranalyseR)

After installing sangeranalyseR, load it in R console.

library(sangeranalyseR)

Now, you are ready to go !

Where to go from here ?

Please continue to the Quick Start Guide or the more detailed Beginners Guide.

Quick Start Guide

This page provides simple quick-start information for using sangeranalyseR with AB1 files. Please read the Beginners Guide page for more details on each step.

If you haven’t already, please follow the steps in the Installation page to install and load sangeranalyseR.

Super-Quick Start (3 lines of code)

The most minimal example gets the job done in three lines of code. More details below.

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "./my_data/",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

writeFasta(my_aligned_contigs)

generateReport(my_aligned_contigs)

Step 1: Prepare your input files

Put all your AB1 files in a directory ./my_data/. The directory can be called anything.

Name your files according to the convention contig_index_direction.ab1. E.g. Drosophila_COI_1_F.ab1 and Drosophila_COI_2_R.ab1 describes a forward and reverse read to assemble into one contig. You can have as many files and contigs as you like in one directory.

Step 2: Load and analyse your data

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "./my_data/",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_F.ab1$")

This command loads, trims, builds contigs, and aligns contigs. All of these are done with sensible default values, which can be changed. I

Step 3 (optional): Explore your data

launchApp(my_aligned_contigs)

This launches an interactive Shiny app where you can view your analysis, change the default settings, etc.

Step 4: Output your aligned contigs

writeFasta(my_aligned_contigs)

This will save your aligned contigs as a FASTA file.

Step 5 (optional): Generate an interactive report

generateReport(my_aligned_contigs)

This will save a detailed interactive HTML report that you can explore.

A Reproducible Example

If you are still confused about how to run sangeranalyseR and want to check whether it produces the results that you want, then check this section for more details. Here we demonstrate a simple and reproducible example for using sangeranalyseR to generate a consensus read from 8 sanger ab1 files (4 contigs and each includes a forward and a reverse read).

1. Prepare your input files & loading

The data of this example is in the sangeranalyseR package; thus, you can simply get its path from the library.

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica', 'ACHLO')

2. Load and analyse your data

Run the following on-liner to create the sanger alignment object.

ACHLO_contigs <- SangerAlignment(ABIF_Directory = parentDir,
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

Following is the R shell output that you will get.

3. Explore your data

Launch the Shiny app to check the visualized results.

launchApp(ACHLO_contigs)

Following is the R shell output that you will get.

And a Shiny would popup as showed in Figure 1

[image: ../_images/quickstart_SangerAlignment_Shiny_dashboard.png]

Figure 1. SangerAlignment Shiny dashboard.

4. Output your aligned contigs

Write each contig and the aligned consensus read into FASTA files.

writeFasta(ACHLO_contigs)

Following is the R shell output that you will get.

And you will get three FASTA files:

	Sanger_all_trimmed_reads.fa

	Sanger_contigs_alignment.fa

	Sanger_contigs_unalignment.fa

5. Generate an interactive report

Last but not least, generate an Rmarkdown report to store all the sequence information.

generateReport(ACHLO_contigs)

For more detailed analysis steps, please choose one the following topics :

	Beginners Guide

	Advanced User Guide - SangerRead (AB1)

	Advanced User Guide - SangerContig (AB1)

	Advanced User Guide - SangerAlignment (AB1)

	Advanced User Guide - SangerRead (FASTA)

	Advanced User Guide - SangerContig (FASTA)

	Advanced User Guide - SangerAlignment (FASTA)

Beginners Guide

If you haven’t already, please follow the steps in the Installation page to install and load sangeranalyseR.

This guide is for users who are starting with AB1 (.ab1) files. If you are starting with FASTA (.fasta or .fa) files, please read through this guide then follow the slightly different path for those starting with FASTA data here: Advanced User Guide - SangerAlignment (FASTA).

Step 1: Preparing your input files

sangeranalyseR takes as input a group of AB1 files, which it then groups together into contigs. Once the individual contigs are built, all the contigs are aligned and a simple phylogenetic tree is made. This section explains how you should organize your files before running sangeranalyseR.

First, prepare a directory and put all your AB1 files inside it (there can be other files in there too, sangeranalyseR will ignore anything without a AB1 file extension). Files can be organised in as many sub-folders as you like. sangeranalyseR will recursively search all the directories inside ABIF_Directory and find all files that end with AB1.

Second, give sangeranalyseR the information it needs to group reads into contigs. To do this, sangeranalyseR needs two pieces of information about each read: the direction of the read (forward or reverse), and the contig that it should be grouped into. There are two ways you can give sangeranalyseR this information:

	using the file name itself

	using a three-column csv file

We’ll cover both approaches using the following example. Imagine you have sequenced four contigs with a forward and reverse read, all from the same species, but from different locations. In this case you might have arranged your data something like Figure_1, below.

[image: ../_images/SangerAlignment_file_structure_beginner.png]

Figure 1. Input ab1 files inside the parent directory, ./tmp/.

When using the filenames to group the reads, you’ll need to specify three parameters: ABIF_Directory, REGEX_SuffixForward, and REGEX_SuffixReverse:

	ABIF_Directory: this is the directory that contains all the AB1 files. In this example, the reads are in the /tmp/ directory, so for convenience we’ll just say that ABIF_Directory should be /path/to/tmp/. In your case, it should be the absolute path to the folder that contains your reads.

	REGEX_SuffixForward: This is a regular expression (if you don’t know what this is, don’t panic - it’s just a way of recognising text that you will get the hang of fast), which tells sangeranalyseR how to use the end of a filename to determine a forward read. All the reads that are in forward direction have to contain this in their filename suffix. There are lots of ways to do this, but for this example, one uesful way to do it is _[0-9]*_F.ab1$. This regular expression just says that the forward suffix is an underscore, followed at least one digit from 0-9, followed by another underscore then ‘F’, and ends with .ab1. The regex does not have to match to the end of the file name, but it’s important to realise is that whatever comes before the part of the filename captured by this regex is by default the contig name. So in this case the regex also determines that the contig name for the first read is ‘Achl_RBNII397-13’.

	REGEX_SuffixReverse: This is just the same as for the forward read, except that it determines the suffix for reverse reads. All the reads that are in reverse direction have to contain this in their filename suffix. In this example, its value is _[0-9]*_R.ab1$. I.e. all we’ve done is switch the ‘F’ in the forward read for an ‘R’ in the reverse read.

If you don’t want to use the regex method, you can use the csv method instead. To use this method, just set processMethod parameter to csv and prepare an input .csv file with three columns:

	reads: the full file name (just the name, not the path) of the read to be grouped

	direction: “F” or “R” for forward and reverse reads, respectively

	contig: the name of the contig that reads should be grouped into

Following is an example of how you should organize your csv file in this example:

Step 2: Loading and analysing your data

After preparing the input files, you can create and align your contigs with just a single line of R code. In technical jargon, we are creating a SangerAlignment S4 instance.

It’s important to note that this function is designed to be both simple and flexible. It’s simple in that it has sensible defaults for all the usual things like trimming reads. But it’s flexible in that you can change any and all of these defaults to suit your particular data and analyses. Here we just cover the simplest usage. The more flexible things are covered in the Advanced sections of the user guide.

So, let’s create our contigs from our reads, and align them.

Here’s how to do it using the regex method:

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "/path/to/tmp/",
 processMethod = "REGEX",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

Here’s how to do it using the csv file method

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "/path/to/tmp/",
 processMethod = "CSV",
 CSV_NamesConversion = "/path/to/csvfile")

my_aligned_contigs is now a SangerAlignment S4 object which contains all of your reads, all the information on how they were trimmed, processed, and aligned, their chromatograms, and an alignment and phylogeny of all of your assembled contigs. The next section explains how to start digging into the details of that object.

Step 3: Exploring your data with the Shiny app

sangeranalseR includes a Shiny app that allows you to see, interact with, and adjust the parameters of your aligned contigs. For example, you can adjust things like the trimming parameters, and see how that changes your reads and your contigs.

To launch the interactive Shiny app use the launchApp function as follows

launchApp(my_aligned_contigs)

[image: ../_images/SangerAlignment_shiny_app.png]

Figure 2. SangerAlignment Shiny app user interface.

Figure_2 shows what the Shiny app looks like. On the left-hand side of Figure_2, there is a navigation menu that you can click to get more detail on every contig and every read. You can explore this app to get a lot more detail and make adjustments to your data. (Note that sangeranalyseR doesn’t allow for editing individual bases of reads though - that’s just not something that R is good for).

Step 4: Outputting your aligned contigs

Once you’re happy with your aligned contigs, you’ll want to save them somewhere.

The following function can write the SangerAlignment object into FASTA files. You just need to tell it where with the outputDir argument. Here we just wrote the alignment to the same folder that contains our reads.

writeFasta(my_aligned_contigs, outputDir = "/path/to/tmp/")

Step 5: Generating an interactive report

Last but not least, it is useful to store all the results in a report for future reference. You can generate a detailed report by running the following one-line function. Figure_3 and Figure_4.

generateReport(my_aligned_contigs)

[image: ../_images/SangerAlignment_alignment_result.png]

Figure 3. An alignment of all contigs in the SangerAlignment object.

[image: ../_images/SangerAlignment_tree.png]

Figure 4. A phylogenetic tree with contigs as the leaf nodes. This can help diagnose any issues with your contigs.

What’s next ?

Now you’ve finished the Beginners Guide, you should have a good overview of how to use the package. To dig a lot deeper into what you can do and why you might bother, there are also a set of advanced guides that focus on the three levels at which you can analyse Sanger data in the sangeranalyseR package. You can analyse individual reads with the SangerRead object, individual contigs with the SangerContig object, and alignments of two or more contigs (as we focussed on in this intro) with teh SangerAlignment object.

If you want to start the analysis from AB1 files, please choose the analysis level and read the following three links.

	Advanced User Guide - SangerRead (AB1)

	Advanced User Guide - SangerContig (AB1)

	Advanced User Guide - SangerAlignment (AB1)

If you want to start the analysis from FASTA files, please choose the analysis level and read the following three links.

	Advanced User Guide - SangerRead (FASTA)

	Advanced User Guide - SangerContig (FASTA)

	Advanced User Guide - SangerAlignment (FASTA)

Advanced User Guide - SangerRead (AB1)

SangerRead is in the bottommost level of sangeranalyseR (Figure_1), and each SangerRead object corresponds to a single read (one AB1 file) in a Sanger sequencing experiment. SangerRead class extends sangerseq class from sangerseqR [https://www.bioconductor.org/packages/release/bioc/html/sangerseqR.html] package and contains input parameters and results of quality trimming and chromatogram. In this section, we are going to go through detailed sangeranalyseR data analysis steps in SangerRead level with AB1 file input.

[image: ../_images/SangerRead_hierarchy.png]

Figure 1. Hierarchy of classes in sangeranalyseR, SangerRead level.

Preparing SangerRead AB1 input

The main input file format to create SangerRead instance is AB1. Before starting the analysis, users need to prepare one target AB1 file, and in this example, it is in the sangeranalyseR package; thus, you can simply get its path by running the following codes:

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFN <- file.path(inputFilesPath,
 "Allolobophora_chlorotica",
 "ACHLO",
 "Achl_ACHLO006-09_1_F.ab1")

The only hard regulation of the filename, Achl_ACHLO006-09_1_F.ab1 in this example, is that the input file must have .ab1 as its file extension. There are some suggestions about the filename in the note below:

Note

	AB1 file should be indexed for better consistency with file-naming regulation for SangerContig and SangerAlignment.

	Forward or reverse direction should be specified in the filename.

Figure_2 shows the suggested file-naming strategy. The filename should contain four main parts: “Contig name”, “Index number”, “Direction” and “ab1 file extension”.

	“Contig name” : Achl_RBNII397-13

	“Index number” : 1

	“Direction” : F

	“ab1 file extension” : .ab1

[image: ../_images/SangerRead_file_structure.png]

Figure 2. SangerRead filename regulation.

In SangerRead section, it is not compulsory to follow the file-naming regulation because users can directly specify the filename in input (see Creating SangerRead instance from AB1); however, in the SangerContig and SangerAlignment, sangeranalyseR will automatically group files, so it is compulsory to have systematic file-naming strategy. For more details, please read Advanced User Guide - SangerContig (AB1) and Advanced User Guide - SangerAlignment (AB1). Figure_3 shows the suggested AB1 file-naming regulation.

[image: ../_images/sangeranalyseR_filename_convention.png]

Figure 3. Suggested AB1 file-naming regulation - SangerRead.

Creating SangerRead instance from AB1

After preparing the SangerRead input AB1 file, A_chloroticaFFN , the next step is to create a SangerRead instance by running SangerRead constructor function or new method. The constructor function is a wrapper for the new method which makes instance creation more intuitive. The inputs include Basic Parameters, Trimming Parameters, and Chromatogram Parameters, and all of them have default values. In the example below, we show both SangerRead creation methods with important parameters.

using `constructor` function to create SangerRead instance
sangerReadF <- SangerRead(readFeature = "Forward Read",
 readFileName = A_chloroticaFFN,
 geneticCode = GENETIC_CODE,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE)

using `new` method to create SangerRead instance
sangerReadF <- new("SangerRead",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFN,
 geneticCode = GENETIC_CODE,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE)

The inputs of SangerRead constructor function and new method are the same. For more details about SangerRead inputs and slots definition, please refer to the sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]. The created SangerRead instance, sangerReadF, is used as the input for the following functions.

Inside the R shell, you can run sangerReadF to get basic information of the instance or run sangerReadF@objectResults@readResultTable to check the creation result of every Sanger read after sangerReadF is successfully created.

Here is the output of sangerReadF:

SangerRead S4 instance
 Input Source : ABIF
 Read Feature : Forward Read
 Read FileName : Achl_ACHLO006-09_1_F.ab1
 Trimming Method : M1
 Primary Sequence : CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
 Secondary Sequence : CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
SUCCESS [2021-12-07 23:31:16] 'Achl_ACHLO006-09_1_F.ab1' is successfully created!

Here is the output of sangerReadF@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward Read

Visualizing SangerRead trimmed read

Before going to Writing SangerRead FASTA file (AB1) and Generating SangerRead report (AB1) pages, it is suggested to visualize the trimmed SangerRead. Run the qualityBasePlot function to get the result in Figure_4. It shows the quality score for each base pairs and the trimming start/end points of the sequence.

[image: ../_images/SangerRead_qualityBasePlot.png]

Figure 4. SangerRead trimmed read visualization.

qualityBasePlot(sangerReadF)

Updating SangerRead quality trimming parameters

In the previous Creating SangerRead instance from AB1 part, the constructor function applies the quality trimming parameters to the read. These parameters are not fixed. After instance creation, users can run updateQualityParam function which will change the QualityReport instance inside the SangerRead and update frameshift amino acid sequences.

newSangerRead <- updateQualityParam(sangerReadF,
 TrimmingMethod = "M2",
 M1TrimmingCutoff = NULL,
 M2CutoffQualityScore = 29,
 M2SlidingWindowSize = 15)

Writing SangerRead FASTA file (AB1)

After quality trimming, users can write sangerReadF into a FASTA file. Below is the one-liner that needs to be run. This function, writeFasta, mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package. Users can further set the compression level through it.

writeFasta(sangerReadF,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA)

Users can download the output FASTA file of this example.

Generating SangerRead report (AB1)

Last but not least, users can save sangerReadF into a static HTML report by knitting Rmd files. In this example, tempdir function will generate a random path.

generateReport(sangerReadF,
 outputDir = tempdir())

SangerRead_Report_ab1.html [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/AB1/Achl_ACHLO006-09_1_F/SangerRead_Report_ab1.html] is the generated SangerRead report html of this example. Users can access to ‘Basic Information’, ‘DNA Sequence’, ‘Amino Acids Sequence’, ‘Quality Trimming’ and ‘Chromatogram’ sections inside this report.

Code summary (SangerRead, ab1)

(1) Preparing SangerRead AB1 input

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFN <- file.path(inputFilesPath,
 "Allolobophora_chlorotica",
 "ACHLO",
 "Achl_ACHLO006-09_1_F.ab1")

(2) Creating SangerRead instance from AB1

using `constructor` function to create SangerRead instance
sangerReadF <- SangerRead(readFeature = "Forward Read",
 readFileName = A_chloroticaFFN)

using `new` method to create SangerRead instance
sangerReadF <- new("SangerRead",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFN)

Following is the R shell output that you will get.

(3) Visualizing SangerRead trimmed read

qualityBasePlot(sangerReadF)

(4) Writing SangerRead FASTA file (AB1)

writeFasta(sangerReadF)

Following is the R shell output that you will get.

And you will get one FASTA file:

	Achl_ACHLO006-09_1_F.fa

(5) Generating SangerRead report (AB1)

generateReport(sangerReadF)

You can check the html report of this SangerRead example (ABIF) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/AB1/Achl_ACHLO006-09_1_F/SangerRead_Report_ab1.html].

Advanced User Guide - SangerContig (AB1)

SangerContig is in the intermediate level of sangeranalyseR (Figure_1), and each SangerContig instance corresponds to a contig in a Sanger sequencing experiment. Among its slots, there are two lists, forward and reverse read list, storing SangerRead in the corresponding direction.

In this section, we are going to go through details about a reproducible SangerContig analysis example with the AB1 file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerContig analysis result.

[image: ../_images/SangerContig_hierarchy.png]

Figure 1. Hierarchy of classes in sangeranalyseR, SangerContig level.

Preparing SangerContig AB1 inputs

The main input file format to create SangerContig instance is AB1. Before starting the analysis, users need to prepare one directory containing all AB1 files, and all of them must be in the first layer of that directory. In other words, there should be no subdirectories. In this example, the data are in the sangeranalyseR package; thus, you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, "Allolobophora_chlorotica", "RBNII")

The value of parentDir is where all AB1 files are placed. If your operating system is macOS, then its value should look like this:

And we showed the files under parentDir in Figure_2:

[image: ../_images/SangerContig_file_structure.png]

Figure 2. SangerContig filename regulation.

Figure_2 shows the file-naming regulation and hierarchy. In this example, RBNII is the parent directory, and all AB1 files must be under its first layer. There are two ways for users to group their AB1 files which are “regular expression matching” and “CSV file matching”, and following are instructions of how to prepare and name your AB1 input files.

(1) “regular expression matching” SangerContig inputs (AB1)

For regular expression matching method, sangeranalyseR will group AB1 files based on their contig names and read directions in their filenames automatically; therefore, users have to follow the file-naming regulations below:

Note

	All input files must have .ab1 as its file extension

	All input files must have the same contig name in their filenames.

	Forward or reverse direction has to be specified in the filename.

There are four parameters, ABIF_Directory, contigName, REGEX_SuffixForward, and REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct AB1 files and divide them into forward and reverse directions.

Note

	ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated files.

	contigName: this is a regular expression that matches filenames that are going to be included in the SangerContig analysis. grepl function in R is used.

	REGEX_SuffixForward: this is a regular expression that matches all filenames in forward direction. grepl function in R is used.

	REGEX_SuffixReverse: this is a regular expression that matches all filenames in reverse direction. grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the contigName to exclude unrelated files and then separate the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. Therefore, it is important to make sure that all target AB1 files share the same contigName and carefully select your REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse reads into the forward read list or vice versa, which will make the program generate wrong results. Therefore, it is important to have a consistent naming strategy. So, how should we systematically name AB1 files? We suggest users to follow the file-naming regulation in Figure_3.

[image: ../_images/sangeranalyseR_filename_convention.png]

Figure 3. Suggested AB1 file-naming regulation - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which narrows down the scope of AB1 files to those we are going to examine. The second part of the regulation is an index. Since there might be more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same contig group. The third part is a direction which is either ‘F’ (forward) or ‘R’ (reverse). Last but not least, files have to end with .ab1 file extension.

To make it more specific, let’s go back to the true example. In Figure_2, there are a lot of AB1 files from different contigs in RBNII (ABIF_Directory).
First, we set contigName to "Achl_RBNII384-13" to reduce candidates from eight to two AB1 files, Achl_RBNII384-13_1_F.ab1 and Achl_RBNII384-13_2_R.ab1. Then, we set REGEX_SuffixForward to "_[0-9]*_F.ab1$" and REGEX_SuffixReverse to "_[0-9]*_R.ab1$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular expression rule, Achl_RBNII384-13_1_F.ab1 and Achl_RBNII384-13_2_R.ab1 will be categorized into “forward read list” and “reverse read list” respectively. The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F.ab1$" and "_[0-9]*_R.ab1$", to group reads and reduce chances of error.

After understanding how parameters work, please refer to Creating SangerContig instance from AB1 below to see how sangeranalseR creates ‘Achl_RBNII384-13’ SangerContig instance.

(2) “CSV file matching” SangerContig inputs (AB1)

For those who are not familiar with regular expression, we provide a second grouping approach, CSV file matching method. sangeranalyseR will group AB1 files based on the information in a CSV file automatically; therefore, users have to follow the regulations below:

Note

Here is an example CSV file (Figure_4)

[image: ../_images/sangeranalyseR_csv_file_sangercontig_ab1.png]

Figure 4. Example CSV file for SangerContig instance creation.

	There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

	The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

	The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

	The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the same contig name, and they will be grouped into the same SangerContig instance.

There are three parameters, ABIF_Directory, contigName, and CSV_NamesConversion,that define the grouping rule to help sangeranalseR to automatically match correct AB1 files and divide them into forward and reverse directions.

Note

	ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated files.

	contigName: this is a regular expression that matches filenames that are going to be included in the SangerContig analysis. grepl function in R is used.

	CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is written. For “regular expression matching”, rules are writtein in filenames, and thus more naming requirements are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on AB1 file-naming.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns), filter out rows whose “contig” is not the value of contigName parameter, find the names of AB1 files listed in “reads”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file (CSV_NamesConversion) and a file directory like Figure_2 (ABIF_Directory) with some AB1 files from different contigs. In the CSV file, both rows have the contig name "Achl_RBNII384-13", which is what we need to assign to the contigName parameter. sangeranalyseR then checks and matches “reads” of these two rows, "Achl_RBNII384-13_1_F.ab1" and "Achl_RBNII384-13_2_R.ab1", in RBNII directory and reduce candidates from eight to two AB1 files. Last, these two reads are assigned into “forward read list” and “reverse read list” respectively by the “direction” column.

After understanding how parameters work, please refer to Creating SangerContig instance from AB1 below to see how sangeranalseR creates ‘Achl_RBNII384-13’ SangerContig instance.

Creating SangerContig instance from AB1

After preparing the input directory, we can create a SangerContig instance by running SangerContig constructor function or new method. The constructor function is a wrapper for new method and it makes instance creation more intuitive. Their input parameters are same, and all of them have their default values. For more details about SangerContig inputs and slots definition, please refer to sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]. We will explain two SangerContig instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerContig creation (AB1)

The consturctor function and new method below contain four parameters, ABIF_Directory, contigName, REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. It also includes important parameters like quality trimming, chromatogram visualization, consensus alignment, and so on. Run the following code and create my_sangerContig instance.

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",
 inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

In this example, contigName is set to Achl_RBNII384-13, so only Achl_RBNII384-13_1_F.ab1 and Achl_RBNII384-13_2_R.ab1 are selected. Moreover, by regular expression pattern matching, Achl_RBNII384-13_1_F.ab1 is categorized into the forward list, and Achl_RBNII384-13_2_R.ab1 is categorized into the reverse read. Both reads are aligned into a contig, my_sangerContig, and it will be used as the input for the following functions.

Inside the R shell, you can run my_sangerContig to get basic information of the instance or run my_sangerContig@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerContig is successfully created.

Here is the output of my_sangerContig:

SangerContig S4 instance
 Input Source : ABIF
 Process Method : REGEX
 ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/Allolobophora_chlorotica/RBNII
 REGEX Suffix Forward : _[0-9]*_F.ab1$
 REGEX Suffix Reverse : _[0-9]*_R.ab1$
 Contig Name : Achl_RBNII384-13
 'minReadsNum' : 2
 'minReadLength' : 20
 'minFractionCall' : 0.5
 'maxFractionLost' : 0.5
 'acceptStopCodons' : TRUE
 'readingFrame' : 1
 Contig Sequence : AGCAGGATAGTAGGGGCTGGTATAAGACTCCTAATTCGAATTGAGCTAAGACAGCCGGGAGCATTTCTAGGAAGGGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGTCTTAACAACATAAGATTTTGACTCCTTCCCCCATCACTAATCCTTCTAGTATCCTCTGCTGCAGTAGAAAAGGGTGCGGGAACTGGATGAACTGTTTATCCACCCCTAGCAAGAAACATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATTTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTGGGTGCCATTAATTTTATTACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTCCTTCTACTCTTATCTTTACCAGTATTAGCCGGTGCAATTACTATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGACCCTGCTGGAGGCGGAGAT
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-12-07 17:01:18] 'Achl_RBNII384-13' is successfully created!

Here is the output of my_sangerContig@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward Read
2 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse Read

(2) “CSV file matching” SangerContig creation (AB1)

The consturctor function and new method below contain three parameters, ABIF_Directory, contigName, and CSV_NamesConversion, that we mentioned in the previous section. It also includes important parameters like quality trimming, chromatogram visualization, consensus alignment, and so on. Run the following code and create my_sangerContig instance.

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerContig", "names_conversion_2.csv")

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 CSV_NamesConversion = csv_namesConversion,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",
 inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 CSV_NamesConversion = csv_namesConversion,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please check (2) “CSV file matching” SangerContig inputs (AB1). Then, it will follow rules in the CSV file and create my_sangerContig. After it’s created, inside the R shell, you can run my_sangerContig to get basic information of the instance or run my_sangerContig@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerContig is successfully created.

Here is the output of my_sangerContig:

SangerContig S4 instance
 Input Source : ABIF
 Process Method : CSV
 ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/Allolobophora_chlorotica/RBNII
 CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/ab1/SangerContig/names_conversion_2.csv
 Contig Name : Achl_RBNII384-13
 'minReadsNum' : 2
 'minReadLength' : 20
 'minFractionCall' : 0.5
 'maxFractionLost' : 0.5
 'acceptStopCodons' : TRUE
 'readingFrame' : 1
 Contig Sequence : AGCAGGATAGTAGGGGCTGGTATAAGACTCCTAATTCGAATTGAGCTAAGACAGCCGGGAGCATTTCTAGGAAGGGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGTCTTAACAACATAAGATTTTGACTCCTTCCCCCATCACTAATCCTTCTAGTATCCTCTGCTGCAGTAGAAAAGGGTGCGGGAACTGGATGAACTGTTTATCCACCCCTAGCAAGAAACATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATTTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTGGGTGCCATTAATTTTATTACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTCCTTCTACTCTTATCTTTACCAGTATTAGCCGGTGCAATTACTATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGACCCTGCTGGAGGCGGAGAT
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-12-07 17:11:48] 'Achl_RBNII384-13' is successfully created!

Here is the output of my_sangerContig@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward Read
2 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse Read

Updating SangerContig quality trimming parameters

In the previous Creating SangerContig instance from AB1 part, the constructor function will apply the quality trimming parameters to all reads. After creating a SangerContig instance, users can change the trimming parameters by running updateQualityParam function which will update all reads with the new trimming parameters and redo reads alignment. If users want to do quality trimming read by read instead of all at once, please move on to the next section, Launching SangerContig Shiny app page.

newSangerContig <- updateQualityParam(my_sangerContig,
 TrimmingMethod = "M2",
 M1TrimmingCutoff = NULL,
 M2CutoffQualityScore = 20,
 M2SlidingWindowSize = 15)

Launching SangerContig Shiny app

We create an interactive local Shiny app for users to go into each SangerRead in SangerContig instance. Users only need to run one function, launchApp, with previously created instance as input and the SangerContig Shiny app will pop up. Here, we will go through SangerRead and SangerContig pages.

launchApp(my_sangerContig)

SangerContig page (SC app)

SangerContig page is the initial page of SangerContig Shiny app. Figure 5 shows the overview page of the contig. Notice that there is a red “Re-calculate Contig” button. Users need to click the button after changing the quality trimming parameters in order to get the updated information. In SangerContig page, there are two expendable tabs, “Forward Reads” and “Reverse Reads” storing the corresponding reads on the left-hand side navigation panel in Figure 5. See SangerRead page (SC app) for more details of the subpage.

[image: ../_images/SangerContig_shiny_SangerContig_page.png]

Figure 5. SangerContig Shiny app initial page - SangerContig page.

The information provided in this page are input parameters and contig results including “genetic code table”, “reference amino acid sequence”, “reads alignment”, “difference data frame”, “dendrogram”, “sample distance heatmap”, “indels data frame”, and “stop codons data frame”.

Figure 6 shows reads alignment result and difference data frame. The alignment is generated by AlignSeqs or AlignTranslation function in DECIPHER [https://bioconductor.org/packages/release/bioc/html/DECIPHER.html] package.

[image: ../_images/SangerContig_shiny_alignment_differenceDF.png]

Figure 6. SangerContig page - reads alignment and difference data frame.

Figure 7 shows dendrogram result in both plot and in data frame. The results are generated by TreeLine function in DECIPHER [https://bioconductor.org/packages/release/bioc/html/DECIPHER.html] package.

[image: ../_images/SangerContig_shiny_dendrogram.png]

Figure 7. SangerContig page - dendrogram.

Figure 8 shows distance between AB1 files. The results are generated by DistanceMatrix function in DECIPHER [https://bioconductor.org/packages/release/bioc/html/DECIPHER.html] package. The heatmap is generated by plot_ly function in plotly [https://plot.ly/r/] package.

[image: ../_images/SangerContig_shiny_samples_distance.png]

Figure 8. SangerContig page - samples distance.

Figure 9 shows insertions, deletions and stop codons data frame.

[image: ../_images/SangerContig_shiny_indelsDF_stopcodonsDF.png]

Figure 9. SangerContig page - indels and stop codons data frame.

SangerRead page (SC app)

Now, let’s go to the next level which is also the lowest level, SangerRead page. SangerRead page contains all details of a read including its trimming and chromatogram inputs and results. All reads are in “forward” or “reverse” direction. In this example, there is one read in each direction and Figure 10 shows “1 Forward Read” page. This page provides basic information, quality trimming inputs, chromatogram plotting inputs etc. Primary/secondary sequences and quality Phred scores table in this figure are dynamic based on the signalRatioCutoff value for base calling and the length of them are always same. Another thing to mention is that primary/secondary sequences and the sequences in the chromatogram in Figure 15 below will always be same after trimming and their color codings for A/T/C/G are same as well.

[image: ../_images/SangerContig_shiny_SangerRead_page.png]

Figure 10. SangerContig Shiny app - SangerRead page

In quality trimming steps, we removes fragment at both ends of sequencing reads with low quality score. It is important because trimmed reads will improves alignment results. Figure 11 shows the UI for Trimming Method 1 (M1): ‘Modified Mott Trimming’. This method is implemented in Phred [http://www.phrap.org/phredphrapconsed.html]. Users can change the cutoff score and click “Apply Trimming Parameters” button to update the UI. The value of input must be between 0 and 1. If the input is invalid, the cutoff score will be set to default 0.0001.

[image: ../_images/SangerContig_shiny_trimming_1.png]

Figure 11. SangerRead page - Trimming Method 1 (M1): ‘Modified Mott Trimming’ UI.

Figure 12 shows another quality trimming method for users to choose from, Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’. This method is implemented in Trimmomatics [http://www.usadellab.org/cms/?page=trimmomatic]. Users can change the cutoff quality score as well as sliding window size and click “Apply Trimming Parameters” button to update the UI. The value of cutoff quality score must be between 0 and 60 (default 20); the value of sliding window size must be between 0 and 40 (default 10). If the inputs are invalid, their values will be set to default.

[image: ../_images/SangerContig_shiny_trimming_2.png]

Figure 12. SangerRead page - Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’ UI.

Figure 13 shows the quality report before and after trimming. After clicking the “Apply Trimming Parameters” button in Figure 11 or Figure 12, the values of these information boxes will be updated to the latest values.

[image: ../_images/SangerContig_shiny_trimmed_before_after.png]

Figure 13. SangerRead page - read quality report before / after trimming.

In Figure 14, the x-axis is the index of the base pairs; the y-axis is the Phred quality score. The green horizontal bar at the top of the plot is the raw read region and the orange horizontal bar represents the remaining read region. Both Figure 14 trimming plot and Figure 15 chromatogram will be updated once users change the quality trimming parameters and click the “Apply Trimming Parameters” button in Figure 15.

[image: ../_images/SangerContig_shiny_bp_quality_plot.png]

Figure 14. SangerContig page - quality trimming plot.

If we only see primary and secondary sequences in the table, we will loose some variations. Chromatogram is very helpful to check the peak resolution. Figure 15 shows the panel of plotting chromatogram. Users can change four parameters: Base Number Per Row, Height Per Row, Signal Ratio Cutoff, and Show Trimmed Region. Among them, Signal Ratio Cutoff is a key parameter. If its value is default value 0.33, it indicates that the lower peak should be at least 1/3rd as high as the higher peak for it count as a secondary peak.

[image: ../_images/SangerContig_shiny_chromatogram_panel.png]

Figure 15. SangerContig page - chromatogram panel.

Here is an example of applying new chromatogram parameters. We click “Show Trimmed Region” to set its value from FALSE to TRUE and click the “Apply Chromatogram Parameters” button. Figure 16 shows the loading notification popup during base calling and chromatogram plotting.

[image: ../_images/SangerContig_plotting_popup.png]

Figure 16. SangerContig page - loading notification popup during replotting chromatogram.

After replotting the chromatogram, we can see that trimmed region is showed in red striped region. Figure 17 shows part of the the chromatogram (1 bp ~ 240 bp). Moreover, chromatogram will be replotted when trimmed positions or chromatogram parameters are updated.

[image: ../_images/SangerContig_shiny_chromatogram.png]

Figure 17. SangerContig page - chromatogram with trimmed region showed.

To let users browse the trimmed primary/secondary sequences without finding “Trimming Start Point” and “Trimming End Point” by themselves, we provide the final trimmed primary/secondary sequences that will be used for reads alignment with quality scores in table format in Figure 18. Frameshift amino acid sequences are also provided.

[image: ../_images/SangerContig_shiny_trimmed_sequences.png]

Figure 18. SangerContig page - trimmed primary/secondary sequences and Phred quality score in table format.

We have updated the trimming and chromatogram parameters for each read. Now, we need to click “Re-calculate contig” button to do alignment again. Last but not least, we can save all data into a new ‘SangerContig’ S4 instance by clicking “Save S4 Instance button”. New S4 instance will be saved in Rda format. Users can run readRDS function to load it into current R environment. Figure 19 shows some hints in the save notification popup.

[image: ../_images/SangerContig_shiny_save_popup.png]

Figure 19. SangerContig page - saving notification popup.

Writing SangerContig FASTA files (AB1)

Users can write the SangerContig instance, my_sangerContig, to FASTA files. There are four options for users to choose from in selection parameter.

	reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

	reads_alignment: Writing reads alignment and contig read to a single FASTA file.

	contig: Writing the contig to a single FASTA file.

	all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerContig,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA,
 selection = "all")

Users can download the output FASTA file of this example through the following three links:

	Achl_RBNII384-13_reads_unalignment.fa

	Achl_RBNII384-13_reads_alignment.fa

	Achl_RBNII384-13_contig.fa

Generating SangerContig report (AB1)

Last but not least, users can save SangerContig instance, my_sangerContig, into a report after the analysis. The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerRead parameter to decide to which level the SangerContig report will go. Moreover, after the reports are generated,
users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports. If users only want to generate the contig result, remember to set includeSangerRead to FALSE in order to save time.

generateReport(my_sangerContig,
 outputDir = tempdir(),
 includeSangerRead = TRUE)

Here is the generated SangerContig html report of this example (ABIF) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/AB1/Achl_RBNII384-13/SangerContig_Report.html]. Users can access to ‘Basic Information’, ‘SangerContig Input Parameters’, ‘Contig Sequence’ and ‘Contig Results’ sections inside it. Furthermore, users can also navigate through html reports of all forward and reverse SangerRead in this SangerContig report.

Code summary (SangerContig, AB1)

(1) Preparing SangerContig AB1 inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, "Allolobophora_chlorotica", "RBNII")

(2) Creating SangerContig instance from AB1

(2.1) “Regular Expression Method” SangerContig creation (AB1)

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",
 inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerContig creation (AB1)

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerContig", "names_conversion_2.csv")

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",
 inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 contigName = "Achl_RBNII384-13",
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(3) Updating SangerContig quality trimming parameters

newSangerContig <- updateQualityParam(my_sangerContig,
 TrimmingMethod = "M2",
 M1TrimmingCutoff = NULL,
 M2CutoffQualityScore = 20,
 M2SlidingWindowSize = 15)

(4) Launching SangerContig Shiny app

launchApp(my_sangerContig)

(5) Writing SangerContig FASTA files (AB1)

writeFasta(my_sangerContig)

Following is the R shell output that you will get.

You will get three FASTA files:

	Achl_RBNII384-13_reads_unalignment.fa

	Achl_RBNII384-13_reads_alignment.fa

	Achl_RBNII384-13_contig.fa

(6) Generating SangerContig report (AB1)

generateReport(my_sangerContig)

You can check the html report of this SangerContig example (ABIF) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/AB1/Achl_RBNII384-13/SangerContig_Report.html].

Advanced User Guide - SangerAlignment (AB1)

SangerAlignment is in the toppest level of sangeranalyseR (Figure_1), and each SangerAlignment instance corresponds to an alignment of contigs in a Sanger sequencing experiment. Among its slots, there is a SangerContig list which will be aligned into a consensus contig. Users can access to each SangerContig and SangerRead inside a SangerAlignment instance.

In this section, we are going to go through details about a reproducible SangerAlignment analysis example with the AB1 file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerAlignment analysis result.

[image: ../_images/SangerAlignment_hierachy.png]

Figure 1. Classes hierarchy in sangeranalyseR, SangerAlignment level.

Preparing SangerAlignment AB1 input

The main input file format to create SangerAlignment instance is AB1. Before starting the analysis, users need to prepare one directory containing all AB1 files, and they can be either all placed in the first layer of that directory or be distributed in different subdirectories. In this example, the data are in the sangeranalyseR package; thus, you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica')

The value of parentDir is where all AB1 files are placed. If your operating system is macOS, then its value should look like this:

And we showed the files under parentDir in Figure_2:

[image: ../_images/SangerAlignment_file_structure.png]

Figure 2. SangerAlignment filename regulation.

Figure_2 shows the file-naming regulation and hierarchy. In this example, Allolobophora_chlorotica is the parent directory, and AB1 files are separated into ACHLO and RBNII directories. There are two ways for users to group their AB1 files which are “regular expression matching” and “CSV file matching”, and following are instructions of how to prepare and name your AB1 input files.

(1) “regular expression matching” SangerAlignment inputs (AB1)

For regular expression matching method, sangeranalyseR will group AB1 files based on their contig names and read directions in their filenames automatically; therefore, users have to follow the file-naming regulations below:

Note

	All input files must have .ab1 as its file extension.

	Input files that are in the same contig group must have the same contig name in their filenames.

	Forward or reverse direction has to be specified in the filename.

There are three parameters, ABIF_Directory, REGEX_SuffixForward, and REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct AB1 files and divide them into forward and reverse directions.

Note

	ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated files.

	REGEX_SuffixForward: this is a regular expression that matches all filenames in forward direction. grepl function in R is used.

	REGEX_SuffixReverse: this is a regular expression that matches all filenames in reverse direction. grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. Then, sangeranalyseR uses the str_split function to split and vectorize their filenames into “contig name” and “direction-suffix” two parts. For those having the same “contig name” will be grouped into the same contig.

Therefore, it is important to have a consistent naming strategy. You need to make sure that AB1 files in the same contig group share the same contig name and carefully select your REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse reads into the forward read list or vice versa, which will make the program generate wrong results. So, how should we systematically name AB1 files? We suggest users to follow the file-naming regulation in Figure_3.

[image: ../_images/sangeranalyseR_filename_convention.png]

Figure 3. Suggested AB1 file-naming regulation - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which helps sangeranalseR to identify which reads should be grouped into the same contig automatically. The second part of the regulation is an index; since there might be more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same contig group. The third part is a direction which is either ‘F’ (forward) or ‘R’ (reverse). Last but not least, files have to end with .ab1 file extension.

To make it more specific, let’s go back to the true example. In Figure_2, there are two subdirectories, ACHLO and RBNII, containing lots of AB1 files from different contigs in the root directory, Allolobophora_chlorotica (ABIF_Directory).

First, we set REGEX_SuffixForward to "_[0-9]*_F.ab1$" and REGEX_SuffixReverse to "_[0-9]*_R.ab1$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular expression rule, Achl_ACHLO006-09_1_F.ab1, Achl_ACHLO007-09_1_F.ab1, Achl_ACHLO040-09_1_F.ab1, Achl_ACHLO041-09_1_F.ab1, Achl_RBNII384-13_1_F.ab1, Achl_RBNII395-13_1_F.ab1, Achl_RBNII396-13_1_F.ab1, and Achl_RBNII397-13_1_F.ab1 are categorized into forward reads, and Achl_ACHLO006-09_1_R.ab1, Achl_ACHLO007-09_1_R.ab1, Achl_ACHLO040-09_1_R.ab1, Achl_ACHLO041-09_1_R.ab1, Achl_RBNII384-13_1_R.ab1, Achl_RBNII395-13_1_R.ab1, Achl_RBNII396-13_1_R.ab1, and Achl_RBNII397-13_1_R.ab1 are categorized into reverse reads. Then, str_split function is used to split each filename above into “contig name” and “direction-suffix”. Eight contig names are detected in this example which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, Achl_ACHLO041-09, Achl_RBNII384-13, Achl_RBNII395-13, Achl_RBNII396-13, and Achl_RBNII397-13. Last, a loop iterates through all contigs, and sangeranalseR creates each of them into a SangerContig instance. You can check Advanced User Guide - SangerContig (AB1) to see how sangeranalyseR creates a SangerContig instance.

The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F.ab1$" and "_[0-9]*_R.ab1$", to group reads and reduce chances of error. Everything mentioned above will be done automatically.

After understanding how parameters work, please refer to Creating SangerAlignment instance from AB1 below to see how sangeranalseR creates SangerAlignment instance.

(2) “CSV file matching” SangerAlignment inputs (AB1)

For those who are not familiar with regular expression, we provide a second grouping approach, CSV file matching method. sangeranalyseR will group AB1 files based on the information in a CSV file automatically. The note below shows the regulations:

Note

Here is an example CSV file (Figure 4)

[image: ../_images/sangeranalyseR_csv_file_sangeralignment_ab1.png]

Figure 4. Example CSV file for SangerAlignment instance creation.

	There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

	The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

	The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

	The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the same contig name, and they will be grouped into the same contig.

There are two parameters, ABIF_Directory and CSV_NamesConversion,that define the grouping rule to help sangeranalseR to automatically match correct AB1 files and divide them into forward and reverse directions.

Note

	ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated files.

	CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is written. For “regular expression matching”, rules are writtein in filenames, and thus more naming requirements are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on AB1 file-naming.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns), find the names of AB1 files listed in “reads”, group them based on “contig”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file (CSV_NamesConversion) and a file directory like Figure_2 (ABIF_Directory) with AB1 files from different contigs. In the CSV file, there are 16 rows and 8 distinct contig names. sangeranalyseR matches “reads” of these 16 rows to filenames in Allolobophora_chlorotica directory. Then sangeranalyseR groups all matched reads, Achl_ACHLO006-09_1_F.ab1, Achl_ACHLO007-09_1_F.ab1, Achl_ACHLO040-09_1_F.ab1, Achl_ACHLO041-09_1_F.ab1, Achl_RBNII384-13_1_F.ab1, Achl_RBNII395-13_1_F.ab1, Achl_RBNII396-13_1_F.ab1, Achl_RBNII397-13_1_F.ab1, Achl_ACHLO006-09_1_R.ab1, Achl_ACHLO007-09_1_R.ab1, Achl_ACHLO040-09_1_R.ab1, Achl_ACHLO041-09_1_R.ab1, Achl_RBNII384-13_1_R.ab1, Achl_RBNII395-13_1_R.ab1, Achl_RBNII396-13_1_R.ab1, and Achl_RBNII397-13_1_R.ab1, into 8 distinct contig names which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, Achl_ACHLO041-09, Achl_RBNII384-13, Achl_RBNII395-13, Achl_RBNII396-13, and Achl_RBNII397-13, by the “contig” column. Last, the directions of reads in each contig are assigned by the “direction” column. Take Achl_ACHLO041-09 contig as an example. Its “forward read list” will include Achl_ACHLO041-09_1_F.ab1, and its “reverse read list” will include Achl_ACHLO041-09_1_R.ab1.

After understanding how parameters work, please refer to Creating SangerAlignment instance from AB1 below to see how sangeranalseR creates SangerAlignment instance.

Creating SangerAlignment instance from AB1

After preparing the input directory, we can create a SangerAlignment instance by running SangerAlignment constructor function or new method. The constructor function is a wrapper for new method and it makes instance creation more intuitive. Their input parameters are same, and all of them have their default values. For more details about SangerAlignment inputs and slots definition, please refer to sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]. We will explain two SangerAlignment instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerAlignment creation (AB1)

The consturctor function and new method below contain three parameters, ABIF_Directory, REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. It also includes important parameters like quality trimming, chromatogram visualization, consensus alignment, contigs alignment, and so on. Run the following code and create my_sangerAlignment instance.

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 2)

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",
 inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 2)

In this example, 16 reads are detected and 8 distinct SangerContig instances are created. These SangerContig instances are stored in a “contig list” in my_sangerAlignment, which will be used as the input for the following functions.

Inside the R shell, you can run my_sangerAlignment to get basic information of the instance or run my_sangerAlignment@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerAlignment is successfully created.

Here is the output of my_sangerAlignment:

SangerAlignment S4 instance
 Input Source : ABIF
 Process Method : REGEX
 ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/Allolobophora_chlorotica
 REGEX Suffix Forward : _[0-9]*_F.ab1$
 REGEX Suffix Reverse : _[0-9]*_R.ab1$
 Contigs Consensus : TTATAYTTTATTYTRGGCGTCTGAAGCAGGATAGTAGGAGCYGGTATAAGACTCCTAATTCGAATTGAGCTAAGACARCCGGGAGCATTCCTAGGAAGRGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGACTTAACAACATAAGATTCTGACTCCTTCCCCCATCACTAATCCTTCTAGTGTCCTCTGCTGCAGTAGAAAAAGGTGCBGGAACTGGATGAACTGTTTATCCRCCCCTAGCAAGAAATATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATYTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTAGGKGCYATTAATTTTATYACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTHCTTCTACTCCTATCYTTACCAGTATTAGCCGGTGCRATTACYATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGAYCCTGCTGGAGGTGGAGATCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-13-07 23:16:16] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignment@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward Read
2 Achl_ACHLO006-09_2_R.ab1 TRUE None None ABIF Reverse Read
3 Achl_ACHLO007-09_1_F.ab1 TRUE None None ABIF Forward Read
4 Achl_ACHLO007-09_2_R.ab1 TRUE None None ABIF Reverse Read
5 Achl_ACHLO040-09_1_F.ab1 TRUE None None ABIF Forward Read
6 Achl_ACHLO040-09_2_R.ab1 TRUE None None ABIF Reverse Read
7 Achl_ACHLO041-09_1_F.ab1 TRUE None None ABIF Forward Read
8 Achl_ACHLO041-09_2_R.ab1 TRUE None None ABIF Reverse Read
9 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward Read
10 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse Read
11 Achl_RBNII395-13_1_F.ab1 TRUE None None ABIF Forward Read
12 Achl_RBNII395-13_2_R.ab1 TRUE None None ABIF Reverse Read
13 Achl_RBNII396-13_1_F.ab1 TRUE None None ABIF Forward Read
14 Achl_RBNII396-13_2_R.ab1 TRUE None None ABIF Reverse Read
15 Achl_RBNII397-13_1_F.ab1 TRUE None None ABIF Forward Read
16 Achl_RBNII397-13_2_R.ab1 TRUE None None ABIF Reverse Read

(2) “CSV file matching” SangerAlignment creation (AB1)

The consturctor function and new method below contain two parameters, ABIF_Directory, and CSV_NamesConversion, that we mentioned in the previous section. It also includes important parameters like quality trimming, chromatogram visualization, consensus alignment, contigs alignment, and so on. Run the following code and create my_sangerAlignment instance.

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerAlignment", "names_conversion_all.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 CSV_NamesConversion = csv_namesConversion,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 CSV_NamesConversion = csv_namesConversion,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please check (2) “CSV file matching” SangerAlignment inputs (AB1). Then, it will follow rules in the CSV file and create my_sangerAlignment. After it’s created, inside the R shell, you can run my_sangerAlignment to get basic information of the instance or run my_sangerAlignment@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerAlignment is successfully created.

Here is the output of my_sangerAlignment:

SangerAlignment S4 instance
 Input Source : ABIF
 Process Method : CSV
 ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/Allolobophora_chlorotica
 CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/ab1/SangerAlignment/names_conversion_all.csv
 Contigs Consensus : TTATAYTTTATTYTRGGCGTCTGAAGCAGGATAGTAGGAGCYGGTATAAGACTCCTAATTCGAATTGAGCTAAGACARCCGGGAGCATTCCTAGGAAGRGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGACTTAACAACATAAGATTCTGACTCCTTCCCCCATCACTAATCCTTCTAGTGTCCTCTGCTGCAGTAGAAAAAGGTGCBGGAACTGGATGAACTGTTTATCCRCCCCTAGCAAGAAATATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATYTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTAGGKGCYATTAATTTTATYACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTHCTTCTACTCCTATCYTTACCAGTATTAGCCGGTGCRATTACYATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGAYCCTGCTGGAGGTGGAGATCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 01:48:28] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignment@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward Read
2 Achl_ACHLO006-09_2_R.ab1 TRUE None None ABIF Reverse Read
3 Achl_ACHLO007-09_1_F.ab1 TRUE None None ABIF Forward Read
4 Achl_ACHLO007-09_2_R.ab1 TRUE None None ABIF Reverse Read
5 Achl_ACHLO040-09_1_F.ab1 TRUE None None ABIF Forward Read
6 Achl_ACHLO040-09_2_R.ab1 TRUE None None ABIF Reverse Read
7 Achl_ACHLO041-09_1_F.ab1 TRUE None None ABIF Forward Read
8 Achl_ACHLO041-09_2_R.ab1 TRUE None None ABIF Reverse Read
9 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward Read
10 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse Read
11 Achl_RBNII395-13_1_F.ab1 TRUE None None ABIF Forward Read
12 Achl_RBNII395-13_2_R.ab1 TRUE None None ABIF Reverse Read
13 Achl_RBNII396-13_1_F.ab1 TRUE None None ABIF Forward Read
14 Achl_RBNII396-13_2_R.ab1 TRUE None None ABIF Reverse Read
15 Achl_RBNII397-13_1_F.ab1 TRUE None None ABIF Forward Read
16 Achl_RBNII397-13_2_R.ab1 TRUE None None ABIF Reverse Read

Updating SangerAlignment quality trimming parameters

In the previous Creating SangerAlignment instance from AB1 part, the constructor function will apply the quality trimming parameters to all reads. After creating a SangerAlignment S4 instance, users can change the trimming parameters by running updateQualityParam function which will update all reads with the new trimming parameters and redo reads alignment in SangerContig and contigs alignment in SangerAlignment. If users want to do quality trimming read by read instead all at once, please read Launching SangerAlignment Shiny app.

newSangerAlignment <- updateQualityParam(my_sangerAlignment,
 TrimmingMethod = "M2",
 M1TrimmingCutoff = NULL,
 M2CutoffQualityScore = 29,
 M2SlidingWindowSize = 15)

Launching SangerAlignment Shiny app

We create an interactive local Shiny app for users to go into each SangerRead and SangerContig in SangerAlignment instance. Users only need to run one function with previously created instance as input, my_sangerAlignment, and the SangerAlignment Shiny app will pop up. Here, we will go through pages in the three levels.

launchApp(my_sangerAlignment)

SangerAlignment page (SA app)

Figure 5 is the initial page and the toppest layer of SangerAlignment App. It provides basic parameters in SangerAlignment instance, contigs alignment result and phylogenetic tree etc. Before checking the results, users need to click “Re-calculate Contigs Alignment” button to do contigs alignment in order to get the updated results. From the left-hand side panel, we can clearly see the hierarchy of the SangerAlignment S4 instance and easily access to all reads and contigs in it.

[image: ../_images/SangerAlignment_ShinyApp_1.png]

Figure 5. SangerAlignment Shiny app initial page - SangerAlignment Page.

Scroll down a bit, users can see the contigs alignment result generated by DECIPHER [https://bioconductor.org/packages/release/bioc/html/DECIPHER.html] R package embedded in SangerAlignment page. Figure 6 shows the contigs alignment result.

[image: ../_images/SangerAlignment_ShinyApp_2.png]

Figure 6. SangerAlignment Page - contigs alignment result.

In SangerAlignment page, the phylogenetic tree result is provided as well (Figure 7). The tree is generated by ape [https://cran.r-project.org/web/packages/ape/index.html] R package which uses neighbor-joining algorithm.

[image: ../_images/SangerAlignment_ShinyApp_3.png]

Figure 7. SangerAlignment Page - phylogenetic tree result.

SangerContig page (SA app)

Now, let’s go to the page in the next level, SangerContig page. Users can click into all contigs and check their results. Figure 8 shows the overview page of Contig 1. Notice that there is a red “Re-calculate Contig” button. After changing the quality trimming parameters, users need to click the button before checking the results below in order to get the updated information.

[image: ../_images/SangerAlignment_ShinyApp_5.png]

Figure 8. SangerAlignment Shiny app - SangerContig page.

The information provided in this page includes : “input parameters”, “genetic code table”, “reference amino acid sequence”, “reads alignment”, “difference data frame”, “dendrogram”, “sample distance heatmap”, “indels data frame”, “stop codons data frame”. Figure 9 and Figure 10 show part of the results in the SangerContig page. The results are dynamic based on the trimming parameters from user inputs.

[image: ../_images/SangerAlignment_ShinyApp_6.png]

Figure 9. SangerContig page - contig-related parameters, genetic code and reference amino acid sequence.

[image: ../_images/SangerAlignment_ShinyApp_7.png]

Figure 10. SangerContig page - reads alignment and difference data frame.

SangerRead page (SA app)

Now, let’s go to the page in the lowest level, SangerRead page. SangerRead page contains all details of a read including its trimming and chromatogram inputs and results. All reads are in “forward” or “reverse” direction. Under “Contig Overview” tab (SangerContig page), there are two expendable tabs, “Forward Reads” and “Reverse Reads” storing corresponding reads on the left-hand side navigation panel in Figure 11. In this example, there are one read in each tab and Figure 11 shows the “1 - 1 Forward Read” page. It provides basic information, quality trimming inputs, chromatogram plotting inputs etc. Primary/secondary sequences in this figure are dynamic based on the signalRatioCutoff value for base calling and the length of them are always same. Another thing to mention is that primary/secondary sequences and the sequences in the chromatogram in Figure 16 below will always be same after trimming and their color codings for A/T/C/G are same as well.

[image: ../_images/SangerAlignment_ShinyApp_8.png]

Figure 11. SangerAlignment Shiny app - SangerRead page.

In quality trimming steps, we removes fragment at both ends of sequencing reads with low quality score. It is important because trimmed reads will improves alignment results. Figure 12 shows the UI for Trimming Method 1 (M1): ‘Modified Mott Trimming’. This method is implemented in Phred [http://www.phrap.org/phredphrapconsed.html]. Users can change the cutoff score and click “Apply Trimming Parameters” button to update the UI. The value of input must be between 0 and 1. If the input is invalid, the cutoff score will be set to default 0.0001.

[image: ../_images/SangerAlignment_ShinyApp_9.png]

Figure 12. SangerRead page - Trimming Method 1 (M1): ‘Modified Mott Trimming’ UI.

Figure 13 shows another quality trimming methods for users to choose from, Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’. This method is implemented in Trimmomatics [http://www.usadellab.org/cms/?page=trimmomatic]. Users can change the cutoff quality score as well as sliding window size and click “Apply Trimming Parameters” button to update the UI. The value of cutoff quality score must be between 0 and 60 (default 20); the value of sliding window size must be between 0 and 40 (default 10). If the inputs are invalid, their values will be set to default.

[image: ../_images/SangerAlignment_ShinyApp_10.png]

Figure 13. SangerRead page - Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’ UI.

Figure 14 shows the quality report before and after trimming. After clicking the “Apply Trimming Parameters” button, the values of these information boxes will be updated to the latest values.

[image: ../_images/SangerAlignment_ShinyApp_11.png]

Figure 14. SangerRead page - read quality report before / after trimming.

In Figure 15, the x-axis is the index of the base pairs; the y-axis is the Phred quality score. The green horizontal bar at the top of the plot is the raw read region and the orange horizontal bar represents the trimmed read region. Both Figure 15 trimming plot and Figure 16 chromatogram will be updated once users change the quality trimming parameters and click the “Apply Trimming Parameters” button in Figure 16.

[image: ../_images/SangerAlignment_ShinyApp_13.png]

Figure 15. SangerRead page - quality trimming plot.

If we only see primary and secondary sequences in the table, we will loose some variations. Chromatogram is very helpful to check the peak resolution. Figure 16 shows the panel of plotting chromatogram. Users can change four parameters: Base Number Per Row, Height Per Row, Signal Ratio Cutoff, and Show Trimmed Region. Among them, Signal Ratio Cutoff is the key parameter. If its value is default value 0.33, it indicates that the lower peak should be at least 1/3rd as high as the higher peak for it count as a secondary peak.

[image: ../_images/SangerAlignment_ShinyApp_14.png]

Figure 16. SangerRead page - chromatogram panel.

Here is an example of applying new chromatogram parameters. We click “Show Trimmed Region” to set its value from FALSE to TRUE. Figure 17 shows the loading notification popup during base calling and chromatogram plotting.

[image: ../_images/SangerAlignment_ShinyApp_15.png]

Figure 17. SangerRead page - loading notification popup during replotting chromatogram.

After replotting the chromatogram, trimmed region is showed in red striped region. Figure 18 shows part of the the chromatogram (1 bp ~ 240 bp). Moreover, chromatogram will be replotted when trimmed positions or chromatogram parameters are updated.

[image: ../_images/SangerAlignment_ShinyApp_16.png]

Figure 18. SangerRead page - chromatogram with trimmed region showed.

To let users browse the trimmed primary/secondary sequences without finding “Trimming Start Point” and “Trimming End Point” by themselves, we provide the final trimmed primary/secondary sequences that will be used for reads alignment in table format with quality scores in Figure 19. Frameshift amino acid sequences are also provided.

[image: ../_images/SangerAlignment_ShinyApp_17.png]

Figure 19. SangerRead page - trimmed primary/secondary sequences and Phred quality score in table format.

We have updated the trimming and chromatogram parameters for each read. Now, we need to click “Re-calculate contig” button to do alignment again. Last but not least, we can save all data into a new ‘SangerContig’ S4 instance by clicking “Save S4 instance button”. New S4 instance will be saved in Rda format. Users can run readRDS function to load it into current R environment. Figure 20 shows some hints in the save notification popup.

[image: ../_images/SangerAlignment_ShinyApp_18.png]

Figure 20. SangerRead page - saving notification popup.

Writing SangerAlignment FASTA files (AB1)

Users can write the SangerAlignment instance, my_sangerAlignment, to FASTA files. There are four options for users to choose from in selection parameter.

	contigs_unalignment: Writing contigs into a single FASTA file.

	contigs_alignment: Writing contigs alignment and contigs consensus read to a single FASTA file.

	all_reads: Writing all reads to a single FASTA file.

	all: Writing contigs, contigs alignment, and all reads into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerAlignment,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA,
 selection = "all")

Users can download the output FASTA file of this example through the following three links:

	Sanger_contigs_unalignment.fa

	Sanger_contigs_alignment.fa

	Sanger_all_trimmed_reads.fa

Generating SangerAlignment report (AB1)

Last but not least, users can save SangerAlignment instance, my_sangerAlignment, into a report after the analysis. The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerContig and includeSangerRead parameters to decide to which level the SangerAlignment report will go. Moreover, after the reports are generated, users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports. If users only want to generate the contig result, remember to set includeSangerRead and includeSangerContig to FALSE in order to save time.

generateReport(my_sangerAlignment,
 outputDir = tempdir(),
 includeSangerRead = FALSE,
 includeSangerContig = FALSE)

Here is the generated SangerAlignment html report of this example (ABIF) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/AB1/SangerAlignment/SangerAlignment_Report.html]. Users can access to ‘Basic Information’, ‘Contigs Consensus’, ‘Contigs Alignment’, ‘Contigs Tree’, and ‘Contig Reports’ sections inside it. Furthermore, users can also navigate through html reports of all contigs and forward and reverse SangerRead in this SangerAlignment report.

Code summary (SangerAlignment, AB1)

(1) Preparing SangerAlignment AB1 inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica')

(2) Creating SangerAlignment instance from AB1

(2.1) “Regular Expression Method” SangerAlignment creation (AB1)

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",
 inputSource = "ABIF",
 processMethod = "REGEX",
 ABIF_Directory = parentDir,
 REGEX_SuffixForward = "_[0-9]*_F.ab1$",
 REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerAlignment creation (AB1)

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerAlignment", "names_conversion_all.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",
 processMethod = "CSV",
 ABIF_Directory = parentDir,
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(3) Updating SangerAlignment quality trimming parameters (AB1)

newSangerAlignment <- updateQualityParam(my_sangerAlignment,
 TrimmingMethod = "M2",
 M1TrimmingCutoff = NULL,
 M2CutoffQualityScore = 29,
 M2SlidingWindowSize = 15)

(4) Launching SangerAlignment Shiny app (AB1)

launchApp(my_sangerAlignment)

(5) Writing SangerAlignment FASTA files (AB1)

writeFasta(my_sangerAlignment)

Following is the R shell output that you will get.

You will get three FASTA files:

	Sanger_contigs_unalignment.fa

	Sanger_contigs_alignment.fa

	Sanger_all_trimmed_reads.fa

(6) Generating SangerAlignment report (AB1)

generateReport(my_sangerAlignment)

You can check the html report of this SangerAlignment example (ABIF) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/AB1/SangerAlignment/SangerAlignment_Report.html].

Advanced User Guide - SangerRead (FASTA)

SangerRead is in the bottommost level of sangeranalyseR (Figure_1), and each SangerRead object corresponds to a single read in Sanger sequencing. In this section, we are going to go through detailed sangeranalyseR data analysis steps in SangerRead level with FASTA file input.

[image: ../_images/SangerRead_hierarchy.png]

Figure 1. Hierarchy of classes in sangeranalyseR, SangerRead level.

Preparing SangerRead FASTA input

The FASTA input method is designed for those who do not want to do quality trimming and base calling on their Sanger sequencing data; therefore, no quality trimming and chromatogram input parameters are needed. Before starting the analysis, users need to prepare a FASTA file, and in this example, it is in the sangeranalyseR package; thus, you can simply get its path by running the following codes:

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFNfa <- file.path(inputFilesPath,
 "fasta",
 "SangerRead",
 "Achl_ACHLO006-09_1_F.fa")

The only hard regulation of the filename, Achl_ACHLO006-09_1_F.fa in this example, is that file extension must be .fasta or .fa.

Creating SangerRead instance from FASTA

After preparing an input FASTA file, the next step is to create a SangerRead instance by running SangerRead constructor function or new method. The constructor function is a wrapper for new method which makes instance creation more intuitive. All of the input parameters have their default values. We list important parameters in the two SangerRead creation methods below. readFileName stores the FASTA filename, and inside it, the string in the first line after “>” is the name of the read. Users need to assign the name of the read to fastaReadName which is used for read-matching. Figure 2 is a valid FASTA file, Achl_ACHLO006-09_1_F.fa (example FASTA file), and the value of fastaReadName is Achl_ACHLO006-09_1_F.

[image: ../_images/SangerRead_fasta_input_file.png]

Figure 2. SangerRead FASTA input file.

using `constructor` function to create SangerRead instance
sangerReadFfa <- SangerRead(inputSource = "FASTA",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFNfa,
 fastaReadName = "Achl_ACHLO006-09_1_F",
 geneticCode = GENETIC_CODE)

using `new` method to create SangerRead instance
sangerReadFfa <- new("SangerRead",
 inputSource = "FASTA",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFNfa,
 fastaReadName = "Achl_ACHLO006-09_1_F",
 geneticCode = GENETIC_CODE)

The inputs of SangerRead constructor function and new method are the same. For more details about SangerRead inputs and slots definition, please refer to sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf].

Inside the R shell, you can run sangerReadFfa to get basic information of the instance or run sangerReadFfa@objectResults@readResultTable to check the creation result of every Sanger read after sangerReadFfa is successfully created.

Here is the output of sangerReadFfa:

SangerRead S4 instance
 Input Source : FASTA
 Read Feature : Forward Read
 Read FileName : Achl_ACHLO006-09_1_F.fa
 Fasta Read Name : Achl_ACHLO006-09_1_F
 Primary Sequence : CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
SUCCESS [2021-12-07 23:37:43] 'Achl_ACHLO006-09_1_F.fa' is successfully created!

Here is the output of sangerReadFfa@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read

Writing SangerRead FASTA files (FASTA)

Users can write sangerReadFfa to a FASTA file. Because the FASTA input method does not support quality trimming or base calling, in this example, the sequence of the output FASTA file will be the same as the input FASTA file. Moreover, users can set the compression level through the one-liner, writeFasta, which mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package.

writeFasta(sangerReadFfa,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA)

Users can download the Achl_ACHLO006-09_1_F.fa of this example.

Generating SangerRead report (FASTA)

Last but not least, users can save sangerReadFfa into a static HTML report by knitting Rmd files. In this example, tempdir function will generate a random path.

generateReport(sangerReadFfa,
 outputDir = tempdir())

SangerRead_Report_fasta.html [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/FASTA/Achl_ACHLO006-09_1_F/SangerRead_Report_fasta.html] is the generated SangerRead report html of this example. Users can access to ‘Basic Information’, ‘DNA Sequence’ and ‘Amino Acids Sequence’ sections inside this report.

Code summary (SangerRead, fasta)

(1) Preparing SangerRead FASTA input

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFNfa <- file.path(inputFilesPath,
 "fasta",
 "SangerRead",
 "Achl_ACHLO006-09_1_F.fa")

(2) Creating SangerRead instance from FASTA

using `constructor` function to create SangerRead instance
sangerReadFfa <- SangerRead(inputSource = "FASTA",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFNfa,
 fastaReadName = "Achl_ACHLO006-09_1_F")

using `new` method to create SangerRead instance
sangerReadFfa <- new("SangerRead",
 inputSource = "FASTA",
 readFeature = "Forward Read",
 readFileName = A_chloroticaFFNfa,
 fastaReadName = "Achl_ACHLO006-09_1_F")

Following is the R shell output that you will get.

(3) Writing SangerRead FASTA files (FASTA)

writeFasta(sangerReadFfa)

Following is the R shell output that you will get.

And you will get one FASTA file:

	Achl_ACHLO006-09_1_F.fa

(4) Generating SangerRead report (FASTA)

generateReport(sangerReadFfa)

You can check the html report of this SangerRead example (FASTA) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/FASTA/Achl_ACHLO006-09_1_F/SangerRead_Report_fasta.html].

Advanced User Guide - SangerContig (FASTA)

SangerContig is in the intermediate level of sangeranalyseR (Figure_1), and each SangerContig instance corresponds to a contig in a Sanger sequencing experiment. Among its slots, there are two lists, forward and reverse read list, storing SangerRead in the corresponding direction.

In this section, we are going to go through details about a reproducible SangerContig analysis example with the FASTA file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerContig analysis result.

[image: ../_images/SangerContig_hierarchy.png]

Figure 1. Hierarchy of classes in sangeranalyseR, SangerContig level.

Preparing SangerContig FASTA input

In Advanced User Guide - SangerContig (AB1), we demonstrated how to use AB1 input files to create SangerContig instance. Here, we explain another input format - the FASTA input. Before starting the analysis, users need to prepare one FASTA file, which must end with .fa or .fasta, containing sequences of all reads. In this example, the FASTA file is in the sangeranalyseR package, and you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerContig", "Achl_ACHLO006-09.fa")

The value of fastaFN is where the FASTA file is placed. If your operating system is macOS, then its value should look like this:

And we showed the reads in fastaFN in Figure_2 (example FASTA file):

[image: ../_images/SangerContig_fasta_input.png]

Figure 2. SangerContig FASTA input file.

Inside the FASTA file (Figure_2; Achl_ACHLO006-09.fa), the strings starting with “>” before each read are the read names. There are two ways of grouping reads which are “regular expression matching” and “CSV file matching”, and following are instructions of how to prepare your FASTA input file.

(1) “regular expression matching” SangerContig inputs (FASTA)

For regular expression matching method, sangeranalyseR will group reads based on their contig name and read direction in their names automatically; therefore, users have to follow the read-naming regulations below:

Note

	All reads in the same contig group must include the same contig name in their read names.

	Forward or reverse direction also has to be specified in their read names.

There are four parameters, FASTA_File, contigName, REGEX_SuffixForward and REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct reads in FASTA file and divide them into forward and reverse directions.

Note

	FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include any other unrelated reads.

	contigName: this is a regular expression that matches read names that are going to be included in the SangerContig analysis. grepl function in R is used.

	REGEX_SuffixForward: this is a regular expression that matches all read names in forward direction. grepl function in R is used.

	REGEX_SuffixReverse: this is a regular expression that matches all read names in reverse direction. grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the contigName to exclude unrelated files and then separate the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. Therefore, it is important to make sure that all target reads in the FASTA file share the same contigName and carefully select your REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse reads into the forward read list or vice versa, which will make the program generate wrong results. Therefore, it is important to have a consistent naming strategy. So, how should we systematically name the reads? We suggest users to follow the file-naming regulation in Figure_3.

[image: ../_images/sangeranalyseR_filename_convention_fasta.png]

Figure 3. Suggested read naming regulation in FASTA file - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which narrows down the scope of reads to those we are going to examine. The second part of the regulation is an index. Since there might be more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same contig group. The last part is a direction which is either ‘F’ (forward) or ‘R’ (reverse).

To make it more specific, let’s go back to the true example. In Figure_2, there are two reads in the FASTA file (fasta_FN). First, we set contigName to "Achl_ACHLO006-09" to confirm that two of them, Achl_ACHLO006-09_1_F and Achl_ACHLO006-09_2_R, contain our target contigName and should be included. Then, we set REGEX_SuffixForward to "_[0-9]*_F$" and REGEX_SuffixReverse to "_[0-9]*_R$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular expression rule, Achl_ACHLO006-09_1_F and Achl_ACHLO006-09_2_R will be categorized into “forward read list” and “reverse read list” respectively. The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F$" and "_[0-9]*_R$", to group reads and reduce chances of error.

After understanding how parameters work, please refer to Creating SangerContig instance from FASTA below to see how sangeranalseR creates ‘Achl_ACHLO006-09’ SangerContig instance.

(2) “CSV file matching” SangerContig inputs (FASTA)

No doubt that read names in the original FASTA file do not follow the naming regulation, and you do not want to change the original FASTA file; thus, we provide a second grouping approach, CSV file matching method. sangeranalyseR will group reads in the FASTA file based on the information in a CSV file automatically, and users do not need to alter the read names in the FASTA file; therefore, users have to follow the regulations below:

Note

Here is an example CSV file (Figure_4)

[image: ../_images/sangeranalyseR_csv_file_sangercontig_fasta.png]

Figure 4. Example CSV file for SangerContig instance creation.

	There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

	The “reads” column stores the read names in the FASTA file that are going to be included in the analysis.

	The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

	The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the same contig name, and they will be grouped into the same SangerContig instance.

There are three parameters, FASTA_File, contigName, and CSV_NamesConversion,that define the grouping rule to help sangeranalseR to automatically match correct reads in a FASTA file and divide them into forward and reverse directions.

Note

	FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include any other unrelated reads.

	contigName: this is a regular expression that matches read names that are going to be included in the SangerContig analysis. grepl function in R is used.

	CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is written. For “regular expression matching”, rules are writtein in read names, and thus more naming requirements are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on naming reads.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns), filter out rows whose “contig” is not the value of contigName parameter, find the read names in the FASTA file listed in “reads”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file (CSV_NamesConversion) and a FASTA file (FASTA_File). In the CSV file, both rows have the contig name "Achl_ACHLO006-09", which is what we need to assign to the contigName parameter. sangeranalyseR then checks and matches “reads” of these two rows, "Achl_ACHLO006-09_1_F" and "Achl_ACHLO006-09_2_R". Last, these two reads are assigned into “forward read list” and “reverse read list” respectively by the “direction” column.

After understanding how parameters work, please refer to Creating SangerContig instance from FASTA below to see how sangeranalseR creates ‘Achl_ACHLO006-09’ SangerContig instance.

Creating SangerContig instance from FASTA

After preparing the input directory, we can create a SangerContig instance by running SangerContig constructor function or new method. The constructor function is a wrapper for new method and it makes instance creation more intuitive. Their input parameters are same, and all of them have their default values. For more details about SangerContig inputs and slots definition, please refer to sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]. We will explain two SangerContig instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerContig creation (FASTA)

The consturctor function and new method below contain four parameters, FASTA_File, contigName, REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. In contrast to AB1 input method, it does not include quality trimming and chromatogram visualization parameters. Run the following code and create my_sangerContigFa instance.

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",
 inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

In this example, contigName is set to Achl_ACHLO006-09, so Achl_ACHLO006-09_1_F and Achl_ACHLO006-09_2_R are matched and selected. Moreover, by regular expression pattern matching, Achl_ACHLO006-09_1_F is categorized into the forward list, and Achl_ACHLO006-09_2_R is categorized into the reverse read. Both reads are aligned into a contig, my_sangerContigFa, and it will be used as the input for the following functions.

Inside the R shell, you can run my_sangerContigFa to get basic information of the instance or run my_sangerContigFa@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerContigFa is successfully created.

Here is the output of my_sangerContigFa:

SangerContig S4 instance
 Input Source : FASTA
 Process Method : REGEX
 Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerContig/Achl_ACHLO006-09.fa
 REGEX Suffix Forward : _[0-9]*_F$
 REGEX Suffix Reverse : _[0-9]*_R$
 Contig Name : Achl_ACHLO006-09
 'minReadsNum' : 2
 'minReadLength' : 20
 'minFractionCall' : 0.5
 'maxFractionLost' : 0.5
 'acceptStopCodons' : TRUE
 'readingFrame' : 1
 Contig Sequence : TTATATTTTATTCTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGGATTACGTCTTGAACGAATTCCCCTGTTTGTCTGAGCTGTGCTAATTACAGTTGTTCTTCTACTTCTATCTTTACCAGTGCTAGCAGGTGCCATTACCATACTTCTTACCGACCGAAACCTCAATACTTCATTCTTTGATCCTGCCGGTGGTGGAGACCCCATCCTC
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-13-07 11:52:40] 'Achl_ACHLO006-09' is successfully created!

Here is the output of my_sangerContigFa@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read

(2) “CSV file matching” SangerContig creation (FASTA)

The consturctor function and new method below contain three parameters, FASTA_File, contigName, and CSV_NamesConversion, that we mentioned in the previous section. Run the following code and create my_sangerContigFa instance.

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerContig", "names_conversion_1.csv")

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",
 inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please check (2) “CSV file matching” SangerContig inputs (FASTA). Then, it will follow rules in the CSV file and create my_sangerContigFa. After it’s created, inside the R shell, you can run my_sangerContigFa to get basic information of the instance or run my_sangerContigFa@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerContigFa is successfully created.

Here is the output of my_sangerContigFa:

SangerContig S4 instance
 Input Source : FASTA
 Process Method : CSV
 Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerContig/Achl_ACHLO006-09.fa
 CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerContig/names_conversion_1.csv
 Contig Name : Achl_ACHLO006-09
 'minReadsNum' : 2
 'minReadLength' : 20
 'minFractionCall' : 0.5
 'maxFractionLost' : 0.5
 'acceptStopCodons' : TRUE
 'readingFrame' : 1
 Contig Sequence : TTATATTTTATTCTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGGATTACGTCTTGAACGAATTCCCCTGTTTGTCTGAGCTGTGCTAATTACAGTTGTTCTTCTACTTCTATCTTTACCAGTGCTAGCAGGTGCCATTACCATACTTCTTACCGACCGAAACCTCAATACTTCATTCTTTGATCCTGCCGGTGGTGGAGACCCCATCCTC
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-13-07 12:01:57] 'Achl_ACHLO006-09' is successfully created!

Here is the output of my_sangerContigFa@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read

Writing SangerContig FASTA files (FASTA)

Users can write the SangerContig instance, my_sangerContigFa, to FASTA files. There are four options for users to choose from in selection parameter.

	reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

	reads_alignment: Writing reads alignment and contig read to a single FASTA file.

	contig: Writing the contig to a single FASTA file.

	all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerContigFa,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA,
 selection = "all")

Users can download the output FASTA file of this example through the following three links:

	Achl_ACHLO006-09_reads_unalignment.fa

	Achl_ACHLO006-09_reads_alignment.fa

	Achl_ACHLO006-09_contig.fa

Generating SangerContig report (FASTA)

Last but not least, users can save SangerContig instance, my_sangerContigFa, into a report after the analysis. The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerRead parameter to decide to which level the SangerContig report will go. Moreover, after the reports are generated,
users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports. If users only want to generate the contig result, remember to set includeSangerRead to FALSE in order to save time.

generateReport(my_sangerContigFa,
 outputDir = tempdir(),
 includeSangerRead = TRUE)

Here is the generated SangerContig html report of this example (FASTA) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/FASTA/Achl_ACHLO006-09/SangerContig_Report.html]. Users can access to ‘Basic Information’, ‘SangerContig Input Parameters’, ‘Contig Sequence’ and ‘Contig Results’ sections inside it. Furthermore, users can also navigate through html reports of all forward and reverse SangerRead in this SangerContig report.

Code summary (SangerContig, FASTA)

1. Preparing SangerContig FASTA input

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerContig", "Achl_ACHLO006-09.fa")

2. Creating SangerContig instance from FASTA

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",
 inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 contigName = "Achl_ACHLO006-09",
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

3. Writing SangerContig FASTA files (FASTA)

writeFasta(my_sangerContigFa)

Following is the R shell output that you will get.

And you will get three FASTA files:

	Achl_ACHLO006-09_reads_unalignment.fa

	Achl_ACHLO006-09_reads_alignment.fa

	Achl_ACHLO006-09_contig.fa

4. Generating SangerContig report (FASTA)

generateReport(my_sangerContigFa)

You can check the html report of this SangerContig example (FASTA) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/FASTA/Achl_ACHLO006-09/SangerContig_Report.html].

Advanced User Guide - SangerAlignment (FASTA)

SangerAlignment is in the toppest level of sangeranalyseR (Figure_1), and each SangerAlignment instance corresponds to an alignment of contigs in a Sanger sequencing experiment. Among its slots, there is a SangerContig list which will be aligned into a consensus contig. Users can access to each SangerContig and SangerRead inside a SangerAlignment instance.

In this section, we are going to go through details about a reproducible SangerAlignment analysis example with the FASTA file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerAlignment analysis result.

[image: ../_images/SangerAlignment_hierachy.png]

Figure 1. Classes hierarchy in sangeranalyseR, SangerAlignment level.

Preparing SangerAlignment FASTA input

In Advanced User Guide - SangerAlignment (AB1), we demonstrated how to use AB1 input files to create SangerAlignment instance. Here, we explain another input format - the FASTA input. Before starting the analysis, users need to prepare one FASTA file, which must end with .fa or .fasta, containing sequences of all reads. In this example, the FASTA file is in the sangeranalyseR package, and you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerAlignment", "Sanger_all_reads.fa")

The value of fastaFN is where the FASTA file is placed. If your operating system is macOS, then its value should look like this:

And we showed the reads in fastaFN in Figure_2 (example FASTA file):

[image: ../_images/SangerAlignment_fasta_input.png]

Figure 2. SangerAlignment FASTA input file (4 out of 8 reads are showed).

Inside the FASTA file (Figure_2; Sanger_all_reads.fa), the strings starting with “>” before each read are the read names. There are two ways of grouping reads which are “regular expression matching” and “CSV file matching”, and following are instructions of how to prepare your FASTA input file.

(1) “regular expression matching” SangerAlignment inputs (FASTA)

For regular expression matching method, sangeranalyseR will group reads based on their contig name and read direction in their read names automatically; therefore, users have to follow the read-naming regulations below:

Note

	All reads in the same contig group must include the same contig name in their read names.

	Forward or reverse direction also has to be specified in their read names.

There are three parameters, FASTA_File, REGEX_SuffixForward and REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct reads in FASTA file and divide them into forward and reverse directions.

Note

	FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include any other unrelated reads.

	REGEX_SuffixForward: this is a regular expression that matches all read names in forward direction. grepl function in R is used.

	REGEX_SuffixReverse: this is a regular expression that matches all read names in reverse direction. grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. Then, sangeranalyseR uses the str_split function to split and vectorize their read names into “contig name” and “direction-suffix” two parts. For those having the same “contig name” will be grouped into the same contig.

Therefore, it is important to have a consistent naming strategy. You need to make sure that reads in the FASTA file that are in the same contig group share the same contig name and carefully select your REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse reads into the forward read list or vice versa, which will make the program generate wrong results. So, how should we systematically name the reads? We suggest users to follow the file-naming regulation in Figure_3.

[image: ../_images/sangeranalyseR_filename_convention_fasta.png]

Figure 3. Suggested read naming regulation in FASTA file - SangerAlignment.

As you can see, the first part of the regulation is a consensus read name (or contig name), which helps sangeranalseR to identify which reads should be grouped into the same contig automatically. The second part of the regulation is an index; since there might be more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same contig group. The Last part is a direction which is either ‘F’ (forward) or ‘R’ (reverse).

To make it more specific, let’s go back to the true example. In Figure_2, there are eight reads in the FASTA file (fasta_FN; Sanger_all_reads.fa). First, we set REGEX_SuffixForward to "_[0-9]*_F$" and REGEX_SuffixReverse to "_[0-9]*_R$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular expression rule, Achl_ACHLO006-09_1_F, Achl_ACHLO007-09_1_F, Achl_ACHLO040-09_1_F, and Achl_ACHLO041-09_1_F, are categorized into forward reads, and Achl_ACHLO006-09_1_R, Achl_ACHLO007-09_1_R, Achl_ACHLO040-09_1_R, and Achl_ACHLO041-09_1_R are categorized into reverse reads. Then, str_split function is used to split each filename above into “contig name” and “direction-suffix”. Four contig names are detected in this example which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, and Achl_ACHLO041-09. Last, a loop iterates through all contig names, and sangeranalseR creates each of them into a SangerContig instance. You can check Advanced User Guide - SangerContig (FASTA) to see how sangeranalyseR creates a SangerContig instance.

The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F$" and "_[0-9]*_R$", to group reads and reduce chances of error. Everything mentioned above will be done automatically.

After understanding how parameters work, please refer to Creating SangerAlignment instance from FASTA below to see how sangeranalseR creates SangerAlignment instance.

(2) “CSV file matching” SangerAlignment inputs (FASTA)

No doubt that read names in the original FASTA file do not follow the naming regulation, and you do not want to change the original FASTA file; thus, we provide a second grouping approach, CSV file matching method. sangeranalyseR will group reads in the FASTA file based on the information in a CSV file automatically, and users do not need to alter the read names in the FASTA file. The note below shows the regulations:

Note

Here is an example CSV file (Figure 4)

[image: ../_images/sangeranalyseR_csv_file_sangeralignment_fasta.png]

Figure 4. Example CSV file for SangerAlignment instance creation.

	There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

	The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

	The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

	The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the same contig name, and they will be grouped into the same contig.

There are two parameters, FASTA_File and CSV_NamesConversion,that define the grouping rule to help sangeranalseR to automatically match correct reads in the FASTA file and divide them into forward and reverse directions.

Note

	FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include any other unrelated reads.

	CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is written. For “regular expression matching”, rules are writtein in read names, and thus more naming requirements are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on naming reads.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns), find the read names in the FASTA file that are listed in “reads”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file (CSV_NamesConversion) and a fasta file (FASTA_File). In the CSV file, there are 8 rows and 4 distinct contig names. sangeranalyseR matches “reads” of these 8 rows to read names in the FASTA file. Then sangeranalyseR groups all matched reads, Achl_ACHLO006-09_1_F, Achl_ACHLO007-09_1_F, Achl_ACHLO040-09_1_F, Achl_ACHLO041-09_1_F, Achl_ACHLO006-09_1_R, Achl_ACHLO007-09_1_R, Achl_ACHLO040-09_1_R, and Achl_ACHLO041-09_1_R, into 4 distinct contigs which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, and Achl_ACHLO041-09, by the “contig” column. Last, the directions of reads in each contig are assigned by the “direction” column. Take Achl_ACHLO041-09 contig as an example. Its “forward read list” will include Achl_ACHLO041-09_1_F, and its “reverse read list” will include Achl_ACHLO041-09_1_R.

After understanding how parameters work, please refer to Creating SangerAlignment instance from FASTA below to see how sangeranalseR creates SangerAlignment instance.

Creating SangerAlignment instance from FASTA

After preparing the input directory, we can create a SangerAlignment instance by running SangerAlignment constructor function or new method. The constructor function is a wrapper for new method and it makes instance creation more intuitive. Their input parameters are same, and all of them have their default values. For more details about SangerAlignment inputs and slots definition, please refer to sangeranalyseR reference manual [https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf]. We will explain two SangerAlignment instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerAlignment creation (FASTA)

The consturctor function and new method below contain three parameters, FASTA_File, REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. In contrast to AB1 input method, it does not include quality trimming and chromatogram visualization parameters. Run the following code and create my_sangerAlignmentFa instance.

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

my_sangerAlignmentFa <- new("SangerAlignment",
 inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

In this example, 8 reads are detected and 4 distinct SangerContig instances are created. These SangerContig instances are stored in a “contig list” in my_sangerAlignmentFa, which will be used as the input for the following functions.

Inside the R shell, you can run my_sangerAlignmentFa to get basic information of the instance or run my_sangerAlignmentFa@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerAlignmentFa is successfully created.

Here is the output of my_sangerAlignmentFa:

SangerAlignment S4 instance
 Input Source : FASTA
 Process Method : REGEX
 Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerAlignment/Sanger_all_reads.fa
 REGEX Suffix Forward : _[0-9]*_F$
 REGEX Suffix Reverse : _[0-9]*_R$
 Contigs Consensus : TTATAYTTTATTYTRGGCGTCTGAGCAGGAATGGTTGGAGCYGGTATAAGACTYCTAATTCGAATYGAGCTAAGACARCCRGGAGCRTTCCTRGGMAGRGAYCAACTMTAYAATACTATYGTWACTGCWCACGCATTTGTAATAATYTTCTTTCTAGTAATRCCTGTATTYATYGGGGGRTTCGGWAAYTGRCTTYTACCTTTAATACTTGGAGCCCCYGAYATRGCATTCCCWCGACTYAACAACATRAGATTCTGACTMCTTCCCCCATCACTRATCCTTYTAGTGTCCTCTGCKGCRGTAGAAAAAGGCGCTGGWACKGGRTGAACTGTTTATCCGCCYCTAGCAAGAAATMTTGCYCAYGCMGGCCCRTCTGTAGAYTTAGCYATYTTTTCYCTTCATTTAGCGGGTGCKTCWTCWATYYTAGGGGCYATTAATTTTATYACYACWGTTATTAAYATGCGWTGAAGAGGMTTACGWCTTGAACGAATYCCMYTRTTYGTYTGAGCYGTRCTAATTACAGTKGTTCTTCTACTYCTATCYTTACCAGTGYTAGCMGGTGCMATTACYATACTWCTTACCGAYCGAAAYCTCAATACYTCMTTCTTTGATCCTGCYGGTGGTGGAGAYCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 04:33:57] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignmentFa@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read
3 Achl_ACHLO007-09_1_F TRUE None None FASTA Forward Read
4 Achl_ACHLO007-09_2_R TRUE None None FASTA Reverse Read
5 Achl_ACHLO040-09_1_F TRUE None None FASTA Forward Read
6 Achl_ACHLO040-09_2_R TRUE None None FASTA Reverse Read
7 Achl_ACHLO041-09_1_F TRUE None None FASTA Forward Read
8 Achl_ACHLO041-09_2_R TRUE None None FASTA Reverse Read

(2) “CSV file matching” SangerAlignment creation (FASTA)

The consturctor function and new method below contain two parameters, FASTA_File, and CSV_NamesConversion, that we mentioned in the previous section. Run the following code and create my_sangerAlignmentFa instance.

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerAlignment", "names_conversion.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

my_sangerAlignmentFa <- new("SangerAlignment",
 inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please check (2) “CSV file matching” SangerAlignment inputs (FASTA). Then, it will follow rules in the CSV file and create my_sangerAlignmentFa. After it’s created, inside the R shell, you can run my_sangerAlignmentFa to get basic information of the instance or run my_sangerAlignmentFa@objectResults@readResultTable to check the creation result of every Sanger read after my_sangerAlignmentFa is successfully created.

Here is the output of my_sangerAlignmentFa:

SangerAlignment S4 instance
 Input Source : FASTA
 Process Method : CSV
 Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerAlignment/Sanger_all_reads.fa
 CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/fasta/SangerAlignment/names_conversion.csv
 Contigs Consensus : TTATAYTTTATTYTRGGCGTCTGAGCAGGAATGGTTGGAGCYGGTATAAGACTYCTAATTCGAATYGAGCTAAGACARCCRGGAGCRTTCCTRGGMAGRGAYCAACTMTAYAATACTATYGTWACTGCWCACGCATTTGTAATAATYTTCTTTCTAGTAATRCCTGTATTYATYGGGGGRTTCGGWAAYTGRCTTYTACCTTTAATACTTGGAGCCCCYGAYATRGCATTCCCWCGACTYAACAACATRAGATTCTGACTMCTTCCCCCATCACTRATCCTTYTAGTGTCCTCTGCKGCRGTAGAAAAAGGCGCTGGWACKGGRTGAACTGTTTATCCGCCYCTAGCAAGAAATMTTGCYCAYGCMGGCCCRTCTGTAGAYTTAGCYATYTTTTCYCTTCATTTAGCGGGTGCKTCWTCWATYYTAGGGGCYATTAATTTTATYACYACWGTTATTAAYATGCGWTGAAGAGGMTTACGWCTTGAACGAATYCCMYTRTTYGTYTGAGCYGTRCTAATTACAGTKGTTCTTCTACTYCTATCYTTACCAGTGYTAGCMGGTGCMATTACYATACTWCTTACCGAYCGAAAYCTCAATACYTCMTTCTTTGATCCTGCYGGTGGTGGAGAYCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 04:38:44] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignmentFa@objectResults@readResultTable:

 readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read
3 Achl_ACHLO007-09_1_F TRUE None None FASTA Forward Read
4 Achl_ACHLO007-09_2_R TRUE None None FASTA Reverse Read
5 Achl_ACHLO040-09_1_F TRUE None None FASTA Forward Read
6 Achl_ACHLO040-09_2_R TRUE None None FASTA Reverse Read
7 Achl_ACHLO041-09_1_F TRUE None None FASTA Forward Read
8 Achl_ACHLO041-09_2_R TRUE None None FASTA Reverse Read

Writing SangerAlignment FASTA files (FASTA)

Users can write the SangerAlignment instance, my_sangerAlignmentFa, to FASTA files. There are four options for users to choose from in selection parameter.

	reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

	reads_alignment: Writing reads alignment and contig read to a single FASTA file.

	contig: Writing the contig to a single FASTA file.

	all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function in Biostrings [https://bioconductor.org/packages/release/bioc/html/Biostrings.html] R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerAlignmentFa,
 outputDir = tempdir(),
 compress = FALSE,
 compression_level = NA,
 selection = "all")

Users can download the output FASTA file of this example through the following three links:

	Sanger_contigs_unalignment.fa

	Sanger_contigs_alignment.fa

	Sanger_all_trimmed_reads.fa

Generating SangerAlignment report (FASTA)

Last but not least, users can save SangerAlignment instance, my_sangerAlignmentFa, into a report after the analysis. The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerContig and includeSangerRead parameters to decide to which level the SangerAlignment report will go. Moreover, after the reports are generated, users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports. If users only want to generate the contig result, remember to set includeSangerRead and includeSangerContig to FALSE in order to save time.

generateReport(my_sangerAlignmentFa,
 outputDir = tempdir(),
 includeSangerRead = FALSE,
 includeSangerContig = FALSE)

Here is the generated SangerAlignment html report of this example (FASTA) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/FASTA/SangerAlignment/SangerAlignment_Report.html]. Users can access to ‘Basic Information’, ‘Contigs Consensus’, ‘Contigs Alignment’, ‘Contigs Tree’, and ‘Contig Reports’ sections inside it. Furthermore, users can also navigate through html reports of all contigs and forward and reverse SangerRead in this SangerAlignment report.

Code summary (SangerAlignment, FASTA)

(1) Preparing SangerAlignment FASTA inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerAlignment", "Sanger_all_reads.fa")

(2) Creating SangerAlignment instance from FASTA

(2.1) “Regular Expression Method” SangerAlignment creation (FASTA)

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

my_sangerAlignmentFa <- new("SangerAlignment",
 inputSource = "FASTA",
 processMethod = "REGEX",
 FASTA_File = fastaFN,
 REGEX_SuffixForward = "_[0-9]*_F$",
 REGEX_SuffixReverse = "_[0-9]*_R$",
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerAlignment creation (FASTA)

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerAlignment", "names_conversion.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 CSV_NamesConversion = csv_namesConversion,
 refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

my_sangerAlignmentFa <- new("SangerAlignment",
 inputSource = "FASTA",
 processMethod = "CSV",
 FASTA_File = fastaFN,
 CSV_NamesConversion = csv_namesConversion,
`refAminoAcidSeq = "SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN")

Following is the R shell output that you will get.

(3) Writing SangerAlignment FASTA files (FASTA)

writeFasta(my_sangerAlignmentFa)

Following is the R shell output that you will get.

You will get three FASTA files:

	Sanger_contigs_unalignment.fa

	Sanger_contigs_alignment.fa

	Sanger_all_trimmed_reads.fa

(4) Generating SangerAlignment report (FASTA)

generateReport(my_sangerAlignmentFa)

You can check the html report of this SangerAlignment example (FASTA) [https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/FASTA/SangerAlignment/SangerAlignment_Report.html].

Q & A …

What is a regular expression?

A regular expression (sometimes shortened as regex or regexp) is a sequence of characters that define a sequence pattern matching rule, mainly used for searching and replacing. It is used in all programming languages like C++, Python, Javascript, and in our case, R.

How to deal with secondary peaks

How to work with FASTA files for input

User Manual (functions)

Following are input parameters for SangerRead, SangerContig, and SangerAlignment constructors. For more detials about other functions, please refer to the sangeranalyseR user manual [https://bioconductor.org/packages/devel/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf].

SangerRead Constructor Parameters

SangerRead(inputSource = "ABIF",
 readFeature = "",
 readFileName = "",
 fastaReadName = "",
 geneticCode = GENETIC_CODE,
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE)

	inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

	readFeature: The direction of the Sanger read. The value must be “Forward Read” or “Reverse Read”.

	readFileName: The absolute filename of the target ABIF or FASTA file.

	fastaReadName: If “inputSource” is “FASTA”, then this value has to be the name of the read inside the FASTA file; if “inputSource” is “ABIF”, then this value is “NULL” by default.

	geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which represents the standard genetic code. This is the code with which the function will attempt to translate your DNA sequences. You can get an appropriate vector with the “getGeneticCode()” function. The default is the standard code.

	TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or “M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

	M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default value is “0.0001”. Otherwise, the value must be “NULL”.

	M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with M2SlidingWindowSize.

	M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with M2CutoffQualityScore.

	baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row. The default value is “100”.

	heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram. The default value is “200”.

	signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is related to chromatogram.

	showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default value is “TRUE”.

SangerContig Constructor Parameters

SangerContig(inputSource = "ABIF",
 fastaFileName = "",
 namesConversionCSV = NULL,
 parentDirectory = "",
 contigName = "",
 suffixForwardRegExp = "_F.ab1",
 suffixReverseRegExp = "_R.ab1",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 processorsNum = NULL)

	inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

	fastaFileName: If “inputSource” is “FASTA”, then this value has to be the name of the FASTA file; if “inputSource” is “ABIF”, then this value is “NULL” by default.

	namesConversionCSV: The absolute filename of CSV file that provides read names following the naming regulation. If “inputSource” is “FASTA”, then users need to prepare the csv file or make sure the original names inside FASTA file are valid; if “inputSource” is “ABIF”, then this value is “NULL” by default.

	parentDirectory: The parent directory of all of the reads contained in ABIF format you wish to analyse. In SangerContig, all reads must be in the first layer in this directory.

	contigName: The contig name of all the reads in “parentDirectory”.

	suffixForwardRegExp: The suffix of the filenames for forward reads in regular expression, i.e. reads that do not need to be reverse-complemented. For forward reads, it should be “_F.ab1”.

	suffixReverseRegExp: The suffix of the filenames for reverse reads in regular expression, i.e. reads that need to be reverse-complemented. For revcerse reads, it should be “_R.ab1”.

	TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or “M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

	M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default value is “0.0001”. Otherwise, the value must be “NULL”.

	M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with M2SlidingWindowSize.

	M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with M2CutoffQualityScore.

	baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row. The default value is “100”.

	heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram. The default value is “200”.

	signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is related to chromatogram.

	showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default value is “TRUE”.

	refAminoAcidSeq: An amino acid reference sequence supplied as a string or an AAString object. If your sequences are protein-coding DNA seuqences, and you want to have frameshifts automatically detected and corrected, supply a reference amino acid sequence via this argument. If this argument is supplied, the sequences are then kept in frame for the alignment step. Fwd sequences are assumed to come from the sense (i.e. coding, or “+”) strand. The default value is “”.

	minReadsNum: The minimum number of reads required to make a consensus sequence, must be 2 or more. The default value is “2”.

	minReadLength: Reads shorter than this will not be included in the readset. The default “20” means that all reads with length of 20 or more will be included. Note that this is the length of a read after it has been trimmed.

	minFractionCall: Minimum fraction of the sequences required to call a consensus sequence for SangerContig at any given position (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

	maxFractionLost: Numeric giving the maximum fraction of sequence information that can be lost in the consensus sequence for SangerContig (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information at a given position.

	geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which represents the standard genetic code. This is the code with which the function will attempt to translate your DNA sequences. You can get an appropriate vector with the getGeneticCode() function. The default is the standard code.

	acceptStopCodons: The logical value “TRUE” or “FALSE”. “TRUE” (the defualt): keep all reads, regardless of whether they have stop codons; “FALSE”: reject reads with stop codons. If “FALSE” is selected, then the number of stop codons is calculated after attempting to correct frameshift mutations (if applicable).

	readingFrame: “1”, “2”, or “3”. Only used if “accept.stop.codons == FALSE”. This specifies the reading frame that is used to determine stop codons. If you use a “refAminoAcidSeq”, then the frame should always be “1”, since all reads will be shifted to frame 1 during frameshift correction. Otherwise, you should select the appropriate reading frame.

	processorsNum: The number of processors to use, or NULL (the default) for all available processors.

SangerAlignment Constructor Parameters

SangerAlignment(inputSource = "ABIF",
 fastaFileName = "",
 namesConversionCSV = NULL,
 parentDirectory = "",
 suffixForwardRegExp = "_F.ab1",
 suffixReverseRegExp = "_R.ab1",
 TrimmingMethod = "M1",
 M1TrimmingCutoff = 0.0001,
 M2CutoffQualityScore = NULL,
 M2SlidingWindowSize = NULL,
 baseNumPerRow = 100,
 heightPerRow = 200,
 signalRatioCutoff = 0.33,
 showTrimmed = TRUE,
 refAminoAcidSeq = "",
 minReadsNum = 2,
 minReadLength = 20,
 minFractionCall = 0.5,
 maxFractionLost = 0.5,
 geneticCode = GENETIC_CODE,
 acceptStopCodons = TRUE,
 readingFrame = 1,
 minFractionCallSA = 0.5,
 maxFractionLostSA = 0.5,
 processorsNum = NULL)

	inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

	fastaFileName: If “inputSource” is “FASTA”, then this value has to be the name of the FASTA file; if “inputSource” is “ABIF”, then this value is “NULL” by default.

	namesConversionCSV: The file path to the CSV file that provides read names that follow the naming regulation. If “inputSource” is “FASTA”, then users need to prepare the csv file or make sure the original names inside FASTA file are valid; if “inputSource” is “ABIF”, then this value is “NULL” by default.

	parentDirectory: The parent directory of all of the reads contained in ABIF format you wish to analyse. In SangerContig, all reads must be in the first layer in this directory.

	suffixForwardRegExp: The suffix of the filenames for forward reads in regular expression, i.e. reads that do not need to be reverse-complemented. For forward reads, it should be “_F.ab1”.

	suffixReverseRegExp: The suffix of the filenames for reverse reads in regular expression, i.e. reads that need to be reverse-complemented. For revcerse reads, it should be “_R.ab1”.

	TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or “M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

	M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default value is “0.0001”. Otherwise, the value must be “NULL”.

	M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with M2SlidingWindowSize.

	M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with M2CutoffQualityScore.

	baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row. The default value is “100”.

	heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram. The default value is “200”.

	signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is related to chromatogram.

	showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default value is “TRUE”.

	refAminoAcidSeq: An amino acid reference sequence supplied as a string or an AAString object. If your sequences are protein-coding DNA seuqences, and you want to have frameshifts automatically detected and corrected, supply a reference amino acid sequence via this argument. If this argument is supplied, the sequences are then kept in frame for the alignment step. Fwd sequences are assumed to come from the sense (i.e. coding, or “+”) strand. The default value is “”.

	minReadsNum: The minimum number of reads required to make a consensus sequence, must be 2 or more. The default value is “2”.

	minReadLength: Reads shorter than this will not be included in the readset. The default “20” means that all reads with length of 20 or more will be included. Note that this is the length of a read after it has been trimmed.

	minFractionCall: Minimum fraction of the sequences required to call a consensus sequence for SangerContig at any given position (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

	maxFractionLost: Numeric giving the maximum fraction of sequence information that can be lost in the consensus sequence for SangerContig (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information at a given position.

	geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which represents the standard genetic code. This is the code with which the function will attempt to translate your DNA sequences. You can get an appropriate vector with the getGeneticCode() function. The default is the standard code.

	acceptStopCodons: The logical value “TRUE” or “FALSE”. “TRUE” (the defualt): keep all reads, regardless of whether they have stop codons; “FALSE”: reject reads with stop codons. If “FALSE” is selected, then the number of stop codons is calculated after attempting to correct frameshift mutations (if applicable).

	readingFrame: “1”, “2”, or “3”. Only used if “accept.stop.codons == FALSE”. This specifies the reading frame that is used to determine stop codons. If you use a “refAminoAcidSeq”, then the frame should always be “1”, since all reads will be shifted to frame 1 during frameshift correction. Otherwise, you should select the appropriate reading frame.

	minFractionCallSA: Minimum fraction of the sequences required to call a consensus sequence for SangerAlignment at any given position (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

	maxFractionLostSA: Numeric giving the maximum fraction of sequence information that can be lost in the consensus sequence for SangerAlignment (see the ConsensusSequence() function from DECIPHER for more information). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information at a given position.

	processorsNum: The number of processors to use, or NULL (the default) for all available processors.

Frequently Asked Questions

Q: What is the difference between two different trimming methods?

A: In sangeranalyseR, we provide two trimming methods, “M1” (the default) or “M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method. If you want to set M1 as your trimming method, you need to assign “TrimmingMethod” to “M1” and “M1TrimmingCutoff” as the threshold that you want. Its default value is “0.0001”. In contrast, you can assign “TrimmingMethod” to “M2” if you want to set M2 as your trimming method. “M2CutoffQualityScore” and “M2SlidingWindowSize” are two parameters that control M2 trimming and their default values are “20” and “10” respectively.

Conclusion

sangeranalyseR provides a new approach to do Sanger sequencing data analysis in R. The main features include well-structured S4 classes, automated data analysis, interactive Shiny apps, exporting reads to FASTA and the generation thorough report. We hope it will be helpful for R users and the bioinformatics community!

License

MIT License

Copyright (c) 2019 Kuan-Hao Chao

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contact

Contact here:

For now, please just use the issue tracker on GitHub for all contacts. That will help us keep up to date with things.

Help

If you need any help, feel free to contact me <kuanhao.chao@gmail.com>

Inside help test

Index

 _images/sangeranalyseR_csv_file_sangercontig_fasta.png
"reads","direction", "contig"
"Achl ACHLO006-09 1 F","F","Achl ACHLO006-09"
"Achl ACHLO006-09 2 R","R","Achl ACHLO006-09"

_images/sangeranalyseR_filename_convention.png
[Consensus Read Name] + + [index] + + [F,R] + .abl

_images/sangeranalyseR_csv_file_sangeralignment_fasta.png
reads","direction", "contig"
Achl ACHLO006-09 1 F","F","Achl ACHLO006-09"
Achl ACHLO006-09 2 R","R","Achl ACHLO006-09
Achl _ACHLO007-09 1 F","F","Achl ACHLO007-09
Achl_ACHLO007-09 2 R","R","Achl ACHLO007-09

Achl_ACHLO040-09_1_F","F","Achl_ACHLO040-09
Achl_ACHLO040-09_2_R","R","Achl_ACHLO040-09
Achl_ACHLO041-09_1_F","F","Achl_ACHLO041-09

"Achl ACHLO041-09 2 R","R","Achl ACHLO041-09"

_images/sangeranalyseR_csv_file_sangercontig_ab1.png
"reads","direction", "contig"
"Achl RBNII384-13_1 F.abl","F","Achl RBNII384-13"
"Achl RBNII384-13 2 R.abl","R","Achl RBNII384-13"

_images/SangerAlignment_ShinyApp_3.png
Contigs Tree

-extdata/Allolobophora chlorotica/ACHLO/Achl ACHLO041-09
—extdata/Allolobophora chlorotica/ACHLO/Achl ACHLO040-09

extdata/Allolobophora chlorotica/RBNII/Achl RBNII395-13

Lextdata/Allolobophora chiorotica/RBNII/Achl RBNII384-13
—extdata/Allolobophora chlorotica/RBNII/Achl RBNII397-13

Lextdata/Allolobophora chlorotica/RBNII/Achl RBNII396-13

[

extdata/Allolobophora chlorotica/ACHLO/Achl ACHLO007-09
Lextdata/Allolobophora chlorotica/ACHLO/Achl ACHLO006-09

extdata/Drosophila melanogaster/Dmel PHDIP9<
xtdata/Drosophila melanogaster/Dmel BBDEE€
xtdata/Drosophila melanogaster/Dmel TDWG
xtdata/Drosophila melanogaster/Dmel TDWC
xtdata/Drosophila melanogaster/Dmel BBDC

_images/SangerAlignment_ShinyApp_5.png
sangeranalyseR Close Ul

4 SangerAlignment
Overview

= 1 SangerContig

= 1 SangerContig Overview Re-calculate Cont|g

@ Forward SangerReads

@ Reverse SangerReads » Output Directory: Jvar/folders/33/7v38jdjd2874jcxb6l71m00h0000gn/T//RtmpPGIk9i
=2 sangerContig 4 Baw ABI Parent /Users/chaokuan-hao/Desktop/tmp
Directory:
= 3 SangerContig » Consenesus Read Achl_ACHLO006-09
Name:
£ 4 sangerContig » Trimming Method: Method 1: 'Modified Mott Trimming'

» Forward Suffix RegExp: o7+
£ 5 SangerContig BEXP: _[0-9]"_F.abl

» Forward Read Number: ;
£ 6 SangerContig » Reverse Suffix RegEXp: [0.9]* Rabl

- . » Reverse Read Number: 1
= 7 SangerContig

= 8 SangerContig

P R R T

_static/comment-bright.png

_images/SangerAlignment_ShinyApp_18.png
Save S4 instance

SangerAlignment Overview Page

4 SangerAlignment
Overview

£ 1 SangerContig

— 1-1Forward SangerRe » Output Directory:

@ Reverse SangerReads » Raw ABI Parent Directory: o New S4 object is store as:

"/var/folders/33/7v38jdjd2874jcxb6l71m0
0h0000gn/T//RtmpPG9k9i/SangerAlignm
ent.Rda’

= 2 sangerContig » Trimming Method:
» Forward Suffix RegExp:
£ 3 SangerContig)

» Reverse Suffix RegExp:

= 4 SangerContig » Contigs Number:

£ 5 SangerContig Alignment Parameters >> Run

readRDS ("/var/folders/33/7v38jdjd2874jcxb
0.5 6171m00h0000gn/T//RtmpPG9k9i/SangerAlignm
ent.Rda")

£ 6 SangerContig

MinFractionCall

to load saved S4 object into R environment

£ 7 SangerContig

£ 8 SangerContig
Genetic Code Data Frame

£ 9 SangerContig

Tri-nucleotide: TIT TTC | TTA | TT6 | TCT | TcC | TCA | TC6 | TAT | TAC | TAA TAG TGT | T6C TGA TGG CTT CIC CTA ¢
Amino Acid : 1 F F L L S S S S Y Y * * C C * w L L L

£ 10 SangerContig

_images/sangeranalyseR_filename_convention_fasta.png
[Consensus Read Name] + + [index] + + [F,R]

_images/SangerAlignment_ShinyApp_2.png
© sangerAlignment Res

Contigs Alignment

20 40 (

EEEREEER R
extdata/Allolobophora_chlorotica/ACHLO/Ach1_ACHL0006-09 ——ATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTA
extdata/Allolobophora_chlorotica/ACHLO/Ach1_ACHL0@@7-09 CGCGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTA

extdata/Allolobophora_chlorotica/ACHLO/Ach1_ACHL0040-09 -——TAAACCGACGGACAGTGGTCAACAAATCATAAAGATATTGGAACTCTATACTTTA
extdata/Allolobophora_chlorotica/ACHLO/Ach1_ACHL0041-09 E ATCTGCGGCCAGTGGTCAACAAATCATAAAGATATCGGAACTCTATACTTTA

extdata/Allolobophora_chlorotica/RBNII/Ach1_RBNII384-13 —GATATTGGAACTCTATACTTTA]
extdata/Allolobophora_chlorotica/RBNII/Ach1_RBNII395-13 —GATATC———AGACTCTATACTT]
extdata/Allolobophora_chlorotica/RBNII/Ach1_RBNII396-13 —GATATCGGAACTCTATACTTTA]

extdata/Allolobophora_chlorotica/RBNII/Ach1_RBNII397-13 —GATATAGGAACTCTATACTTTA]
extdata/Drosophila_melanogaster/Dmel_BBDCN941-10
extdata/Drosophila_melanogaster/Dmel_BBDEE689-10
extdata/Drosophila_melanogaster/Dmel_PHDIP946-11
extdata/Drosophila_melanogaster/Dmel_TDWGB557-10 —AAAGATATTGGAACTTTATATTTTA]
extdata/Drosophila_melanogaster/Dmel_TDWGB669-10 —AAAGATATTGGAACTTTATATTTTA]

Consensus [TAT RN CINCGYICAGT GG TCAACAAATCATAAAGATA T EREI VI T ¥ TAVIN T\

_static/ajax-loader.gif

_images/SangerAlignment_ShinyApp_8.png
sangeranalyseR Close UI

4 SangerAlignment
Overview

Achl_ACHLO006-09_1_F.ab1

£ 1 SangerContig Overvie! (full path: /Users/chaokuan-hao/Desktop/tmp/extdata/Allolobophora_chlorotica/ACHLO/Achl_ACHLO006-09_1_F.ab1)

@ Forward SangerReads ¢

= 1-1Forward SangerRead

@ Reverse SangerReads ¢

2 SangerContig

= Primary Sequence

= 3 SangerContig

1123 7 (8|9

4 (5|6 10 |11 | 12 | 13
=4 SangerContig 1 cmmc -- a - a --- a - ¢ - G

14 |15 16 17 18 |19 |20 21 |22 |23 |24 25

s T cl

@
@
(2]

5 SangerContig = Secondary Sequence

3(4|5|6 |7 |8 (9 (101112 |13 (14 (15|16 |17 |18 (19 (20|21 |22 |23 (24 (25

12
= 6 SangerContig T T'A ¢ T T T A TA T T T T AT T ¢ 1T ¢ ¢ 't ¢!

(]
(]
(2]

_images/SangerAlignment_ShinyApp_9.png
O Quality Report: _

© Trimming Parameters Input

@ Your trimming method selection : 'Modified Mott Trimming'

le-04

Cutoff Score

Input Value

le-04

_images/SangerAlignment_ShinyApp_6.png
Contig Parameters =

p 20 0.5

MinReadsNum MinReadLength MinFractionCall

0.5 TRUE 1

MaxFractionLost AcceptStopCodons ReadingFrame

Genetic Code Data Frame =

Tri-nucleotide: TIT | TTIC | TTA | TTG | TCT | TCC | TCA | TCG | TAT | TAC | TAA TAG | TGT TGC | T
Amino Acid : 1 F F L L s s s s Y Y . . c c

(**: stop codon)

Reference Amino Acid Sequence -

AA Sequence:

_static/comment-close.png

_images/SangerAlignment_ShinyApp_7.png
© Consensus Read Results:

Alignment

1_Read_Achl_ACHL0006-09_1_F.abl
2_Read_Achl_ACHL00@6-09_2_R.ab1l
Consensus

Consensus

Differences Data frame

Show entries

20 40 60

CTGGGCGTCTGAGCAGGA]
ATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGG:
ATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGG:

[TATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGGA]

Search:

name pairwise.diffs.to.consensus unused.chars
1 1_Read_Achl_ACHLO006-09_1_F.abl 0 0
2 2_Read_Achl_ACHLO006-09_2_R.ab1 0 0
Showing 1 to 2 of 2 entries Previous 1T Next

_static/comment.png

_images/SangerAlignment_alignment_result.png
ACHLO/Ach1_ACHL0006-09
ACHLO/Ach1_ACHL0007-09
RBNII/Achl_RBNII396-13
RBNII/Achl_RBNII397-13

Consensus

20 40 60 80 100
GTATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACT TTATATTTTATTCTGGEGCGTCTGAGCAGGAATGGT TGGAGCCGGTATAAGACTTCTAATTCGAAT
————— AACGCGGCCAGTGGTCAACAAATCATAAAGATATTGGAACT TTATATTTTATTCTGGEGCETCTGAGCAGGAATGGT TGGAGCCGGTATAAGACTTCTAATTCGAAT
ACGATATCGGAACTCTATACTTTATGT TAGGCGTCTGAGCAGAATAGTAGGAGCCGGTATAAGGCTCUTAATTCGAAT
—CGATATAGGAACTCTATACTTTATGT TACGCGTCTGAGCA-SNATAGTAGGAGCCGGTATAAGGCTCCTAATTCGAAT

GTATANYSNCGGCCAGTGGT CAACAAATCATAANGATATRIGGAAC TN TATANT T TATIY TREIGCGE TCTEAGCATRINATING TIIGGAGCCGGTATAAGRCTMYTAAT TCGAAT)

_images/SangerAlignment_fasta_input.png
>Ach1_ACHL0006-09_1_F
CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCT
GGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCA
TCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGA
TTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGT
TTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTG
CGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
>Achl_ACHL0007-09_2_R
GATGGGGTCTCCACCACCGGCAGGATCAAAGAATGAAGTATTGAGGTTTCGGTCGGTAAGAAGTATGGTAATGGCACCTG
CTAGCACTGGTAAAGATAGAAGTAGAAGAACAACTGTAATTAGCACAGCTCAGACAAACAGGGGAATTCGTTCAAGACGT
AATCCTCTTCAACGCATATTAATAACTGTGGTGATAAAATTAATAGCCCCTAGAATAGAAGACGCACCCGCTAAATGAAG
GGAAAAGATGGCTAAATCTACAGACGGGCCTGCGTGGGCAAGATTTCTTGCTAGAGGCGGATAAACAGTTCACCCCGTAC
CAGCGCCTTTTTCTACCGCCGCAGAGGACACTAAAAGGATCAGTGATGGGGGAAGTAGTCAGAATCTCATGTTGTTGAGT
CGAGGGAATGCTATATCGGGGGCTCCAAGTATTAAAGGTAAAAGCCAGTTTCCGAATCCCCCGATGAATACAGGCATTAC
TAGAAAGAAGATTATTACAAATGCGTGTGCAGTAACGATAGTATTGTATAGTTGGTCTCTGCCCAGGAACGCTCCTGGTT
GTCTTAGCTCGATTCGAATTAGAAGTCTTATACCGGCTCC

>Achl_ACHL0041-09_1_F
GCGTCTGAGCAGGAATGGTAGGAGCTGGTATAAGACTCCTAATTCGAATTGAGCTAAGACAGCCGGGAGCATTCCTAGGA
AGGGATCAGCTCTATAATACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGG
GGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGACTTAACAACATAAGATTCT
GACTCCTTCCCCCGTCACTAATTCTTCTAGTGTCCTCTGCTGCAGTAGAAAAAGGTGCAGGAACTGGATGAACTGTTTAT
CCGCCCCTAGCAAGAAATATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATTTTTTCTCTTCATTTAGCGGGTGCTTC
ATCAATCTTAGGGGCCATTAATTTTATTACTACTGTTATTAACATGCGATGAAGAGGCTTACGACTTGAACGAATCCCAT
TATTCGTTTGAGCCGTACTAATCACAGTGGTGCTTCTACTCCTATCCCTACCAGTGTTAGCCGGTGCAATTACTATATTA
CTTACCGATCGAAATCTAAATACCTCCTTCTTTGATCCTGCTGGGG

>Achl_ACHL0041-09_2_ R
GGATCTCCACCCCCAGCAGGATCAAAGAAGGAGGTATTTAGATTTCGATCGGTAAGTAATATAGTAATTGCACCGGCTAA
CACTGGTAGGGATAGGAGTAGAAGCACCACTGTGATTAGTACGGCTCAAACGAATAATGGGATTCGTTCAAGTCGTAAGC
CTCTTCATCGCATGTTAATAACAGTAGTAATAAAATTAATGGCCCCTAAGATTGATGAAGCACCCGCTAAATGAAGAGAA
AAAATAGCTAAGTCTACAGATGGGCCGGCATGAGCAATATTTCTTGCTAGGGGCGGATAAACAGTTCATCCAGTTCCTGC
ACCTTTTTCTACTGCAGCAGAGGACACTAGAAGAATTAGTGACGGGGGAAGGAGTCAGAATCTTATGTTGTTAAGTCGTG
GGAATGCCATGTCAGGGGCTCCAAGTATTAAAGGTAGAAGTCAATTACCGAACCCCCCAATAAATACAGGTATTACTAGA
AAGAAAATTATTACAAATGCGTGAGCAGTTACAATAGTATTATAGAGCTGATCCCTTCCTAGGAATGCTCCCGGCTGTCT
TAGCTCAATTCGAATTAGGAGTCTTATACCAGCTCCTACCATTCCTGCTCAGACGCCTAAAATAAAGTA

_images/SangerAlignment_ShinyApp_15.png
X Plotting Chromatogram ...

© Base pairs per row : 80
© Height per row : 200

© signal Ratio Cutoff: 0.33
© Show trimmed : TRUE

(If 'Signal Ratio Cutoff' is too small, it would need more time to
replot the chromatogram)

_images/SangerAlignment_ShinyApp_16.png
@ Chromato
5//7

J‘W&uﬂi Muﬂlummluhm

MMMMM :

_images/SangerAlignment_ShinyApp_13.png
Quality Trimming Plot

Phred Quality Score

80

70

60

50

40

30

20

10

e Quality Each BP [l Trimmed Read [l Whole Read

.
A |r“ming Strat Trimming End °
BP Index BP Index -
.
; *
0 100 200 300 400 500 600 700

Base Pair Index

_images/SangerAlignment_ShinyApp_14.png
© Chromatogram:

© Chromatogram Input -

Base Number Per Row

5

—)— .~ Signal Ratio Cutoff 21 466

oo e Trimming Start Pos Trimming End Pos
033

Height Per Row

- () Whether show trimmed region

600
H/)

T T
50 105 160 25 20 35 380 435 40 545 600

Apply Chromatogram Parameters

® Chromatogram Output -

_images/SangerAlignment_ShinyApp_17.png
DNA Sequence (After Trimming): .

= Primary Sequence
/1 234 567 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 2425 26 27|28 |29 30 31 32 33 34 35 36 37 38 39 40
1
= Secondary Sequence
{1 234 567 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27|28 29 30 31 32 33 34 35 36 37 38 39 40
1

= Quality Phred Score

_images/SangerAlignment_file_structure.png
v . Allolobophora_chlorotica

v . ACHLO

Achl_ACHLO006-09_1_F.ab1

Achl_ACHLO006-09_2_R.ab1

Achl_ACHLO007-09_1_F.ab1

Achl_ACHLO007-09_2_R.ab1

Achl_ACHLO040-09_1_F.ab1

Achl_ACHLO040-09_2_R.ab1

Achl_ACHLO041-09_1_F.ab1

Achl_ACHLO041-09_2_R.ab1

v . RBNII

Achl_RBNII384-13_1_F.ab1

Achl_RBNII384-13_2_R.ab1

Achl_RBNII395-13_1_F.ab1

Achl_RBNII395-13_2_R.ab1

Achl_RBNII396-13_1_F.ab1

Achl_RBNII396-13_2_R.ab1

Achl_RBNII397-13_1_F.ab1

Achl_RBNII397-13_2_R.ab1

_static/file.png

nav.xhtml

 Table of Contents

 		
 sangeranalyseR’s tutorial

 		
 Installation

 		
 System requirements

 		
 Install from Bioconductor

 		
 Install the development version

 		
 Where to go from here ?

 		
 Quick Start Guide

 		
 Super-Quick Start (3 lines of code)

 		
 Step 1: Prepare your input files

 		
 Step 2: Load and analyse your data

 		
 Step 3 (optional): Explore your data

 		
 Step 4: Output your aligned contigs

 		
 Step 5 (optional): Generate an interactive report

 		
 A Reproducible Example

 		
 1. Prepare your input files & loading

 		
 2. Load and analyse your data

 		
 3. Explore your data

 		
 4. Output your aligned contigs

 		
 5. Generate an interactive report

 		
 Beginners Guide

 		
 Step 1: Preparing your input files

 		
 Step 2: Loading and analysing your data

 		
 Step 3: Exploring your data with the Shiny app

 		
 Step 4: Outputting your aligned contigs

 		
 Step 5: Generating an interactive report

 		
 What’s next ?

 		
 Advanced User Guide - SangerRead (AB1)

 		
 Preparing SangerRead AB1 input

 		
 Creating SangerRead instance from AB1

 		
 Visualizing SangerRead trimmed read

 		
 Updating SangerRead quality trimming parameters

 		
 Writing SangerRead FASTA file (AB1)

 		
 Generating SangerRead report (AB1)

 		
 Code summary (SangerRead, ab1)

 		
 (1) Preparing SangerRead AB1 input

 		
 (2) Creating SangerRead instance from AB1

 		
 (3) Visualizing SangerRead trimmed read

 		
 (4) Writing SangerRead FASTA file (AB1)

 		
 (5) Generating SangerRead report (AB1)

 		
 Advanced User Guide - SangerContig (AB1)

 		
 Preparing SangerContig AB1 inputs

 		
 (1) “regular expression matching” SangerContig inputs (AB1)

 		
 (2) “CSV file matching” SangerContig inputs (AB1)

 		
 Creating SangerContig instance from AB1

 		
 (1) “regular expression matching” SangerContig creation (AB1)

 		
 (2) “CSV file matching” SangerContig creation (AB1)

 		
 Updating SangerContig quality trimming parameters

 		
 Launching SangerContig Shiny app

 		
 SangerContig page (SC app)

 		
 SangerRead page (SC app)

 		
 Writing SangerContig FASTA files (AB1)

 		
 Generating SangerContig report (AB1)

 		
 Code summary (SangerContig, AB1)

 		
 (1) Preparing SangerContig AB1 inputs

 		
 (2) Creating SangerContig instance from AB1

 		
 (3) Updating SangerContig quality trimming parameters

 		
 (4) Launching SangerContig Shiny app

 		
 (5) Writing SangerContig FASTA files (AB1)

 		
 (6) Generating SangerContig report (AB1)

 		
 Advanced User Guide - SangerAlignment (AB1)

 		
 Preparing SangerAlignment AB1 input

 		
 (1) “regular expression matching” SangerAlignment inputs (AB1)

 		
 (2) “CSV file matching” SangerAlignment inputs (AB1)

 		
 Creating SangerAlignment instance from AB1

 		
 (1) “regular expression matching” SangerAlignment creation (AB1)

 		
 (2) “CSV file matching” SangerAlignment creation (AB1)

 		
 Updating SangerAlignment quality trimming parameters

 		
 Launching SangerAlignment Shiny app

 		
 SangerAlignment page (SA app)

 		
 SangerContig page (SA app)

 		
 SangerRead page (SA app)

 		
 Writing SangerAlignment FASTA files (AB1)

 		
 Generating SangerAlignment report (AB1)

 		
 Code summary (SangerAlignment, AB1)

 		
 (1) Preparing SangerAlignment AB1 inputs

 		
 (2) Creating SangerAlignment instance from AB1

 		
 (3) Updating SangerAlignment quality trimming parameters (AB1)

 		
 (4) Launching SangerAlignment Shiny app (AB1)

 		
 (5) Writing SangerAlignment FASTA files (AB1)

 		
 (6) Generating SangerAlignment report (AB1)

 		
 Advanced User Guide - SangerRead (FASTA)

 		
 Preparing SangerRead FASTA input

 		
 Creating SangerRead instance from FASTA

 		
 Writing SangerRead FASTA files (FASTA)

 		
 Generating SangerRead report (FASTA)

 		
 Code summary (SangerRead, fasta)

 		
 (1) Preparing SangerRead FASTA input

 		
 (2) Creating SangerRead instance from FASTA

 		
 (3) Writing SangerRead FASTA files (FASTA)

 		
 (4) Generating SangerRead report (FASTA)

 		
 Advanced User Guide - SangerContig (FASTA)

 		
 Preparing SangerContig FASTA input

 		
 (1) “regular expression matching” SangerContig inputs (FASTA)

 		
 (2) “CSV file matching” SangerContig inputs (FASTA)

 		
 Creating SangerContig instance from FASTA

 		
 (1) “regular expression matching” SangerContig creation (FASTA)

 		
 (2) “CSV file matching” SangerContig creation (FASTA)

 		
 Writing SangerContig FASTA files (FASTA)

 		
 Generating SangerContig report (FASTA)

 		
 Code summary (SangerContig, FASTA)

 		
 1. Preparing SangerContig FASTA input

 		
 2. Creating SangerContig instance from FASTA

 		
 3. Writing SangerContig FASTA files (FASTA)

 		
 4. Generating SangerContig report (FASTA)

 		
 Advanced User Guide - SangerAlignment (FASTA)

 		
 Preparing SangerAlignment FASTA input

 		
 (1) “regular expression matching” SangerAlignment inputs (FASTA)

 		
 (2) “CSV file matching” SangerAlignment inputs (FASTA)

 		
 Creating SangerAlignment instance from FASTA

 		
 (1) “regular expression matching” SangerAlignment creation (FASTA)

 		
 (2) “CSV file matching” SangerAlignment creation (FASTA)

 		
 Writing SangerAlignment FASTA files (FASTA)

 		
 Generating SangerAlignment report (FASTA)

 		
 Code summary (SangerAlignment, FASTA)

 		
 (1) Preparing SangerAlignment FASTA inputs

 		
 (2) Creating SangerAlignment instance from FASTA

 		
 (3) Writing SangerAlignment FASTA files (FASTA)

 		
 (4) Generating SangerAlignment report (FASTA)

 		
 Q & A …

 		
 What is a regular expression?

 		
 How to deal with secondary peaks

 		
 How to work with FASTA files for input

 		
 User Manual (functions)

 		
 SangerRead Constructor Parameters

 		
 SangerContig Constructor Parameters

 		
 SangerAlignment Constructor Parameters

 		
 Frequently Asked Questions

 		
 Q: What is the difference between two different trimming methods?

 		
 Conclusion

 		
 License

 		
 Contact

 		
 Help

 		
 Inside help test

_static/down-pressed.png

_static/down.png

_images/SangerAlignment_ShinyApp_10.png
O Quality Report: -

© Trimming Parameters Input

@ Your trimming method selection : 'Trimmomatics Sliding Window Trimming'

20 15

Cutoff Quality Score Sliding Window Size

Input Value Input Value

20 15

_images/SangerAlignment_shiny_app.png
sangeranalyseR

4 SangerAlignment
Overview

= 1 SangerContig

= 1 SangerContig Overview

@ Forward SangerReads ¢

= 1-1Forward SangerRead

@ Reverse SangerReads ¢

= 2 SangerContig
= 3 SangerContig

= 4 SangerContig

Save S4 instance Close Ul

[Re-calculate Contigs Alignment

» Output Directory:

» Raw ABI Parent
Directory:

» Trimming Method:

» Forward Suffix RegExp:

» Reverse Suffix RegExp:

» Contigs Number:

/var/folders/33/7v38jdjd2874jcxb6l71m00h0000gn/T//RtmpZy72rK

/Users/chaokuan-hao/Desktop/tmp

Method 1: 'Modified Mott Trimming'
_[0-9]*_F.ab1
_[0-9]*_R.abl

4

_images/SangerAlignment_ShinyApp_11.png
@ Trimmed Result Output

Before Trimming

702

Raw Segence Len

After Trimming

461

Trimmed Seqence Length

16

Trimming Start Pos

52.88

Raw Mean Quality Score

58.21

Trimmed Mean Quality Score

477

Trimming End Pos

1

Raw Min Quality Score

13

Trimmed Min Quality Score

65.67 %

Remaining Ratio

_images/SangerAlignment_tree.png
TRBNII/ACh/ RBNII397-13

L?BNII/AchI RBNII396-13

—ACHLO/Achl ACHLO006-09

—ACHLO/Achl ACHLO007-09

_static/up-pressed.png

_images/SangerAlignment_file_structure_beginner.png
|
-
N,
gl
o°
P}
@
z

Achl_RBNII397-13_2_R.ab1

Achl_RBNII397-13_1_F.ab1

Achl_RBNII396-13_2_R.ab1

Achl_RBNII396-13_1_F.ab1

<
3
a5
[y
(o]

Achl_ACHLO007-09_2_R.ab1

Achl_ACHLO007-09_1_F.ab1

Achl_ACHLO006-09_2_R.ab1

Achl_ACHLO006-09_1_F.ab1

_static/minus.png

_images/SangerAlignment_ShinyApp_1.png
SangerAlignment Overview Page l
Input Parameters: =

4 SangerAlignment
Overview

£ 1 SangerContig

angerContig Overvie

@ Forward SangerReads

— 1-1Forward SangerRead » Output Directory: Jvar/folders/33/7v38jdjd2874jcxb6(71m00h0000gn/T//RtmpPGIkIi
O R ity » Raw ABI Parent /Users/chaokuan-hao/Desktop/tmp
Directory:
2 SangerContig
» Trimming Method: Method 1: 'Modified Mott Trimming'
3 SangerContig » Forward Suffix RegExp: [0.9]* Fabl
» Reverse Suffix RegExp: g
4 SangerContig S SCPIEREDL
» Contigs Number: i)

5 SangerContig .
Alignment Parameters

6 SangerContig

0.5 0.5

= 7 SangerContig

MinFractionCall MaxFractionLost

_images/SangerAlignment_hierachy.png
[SangerContig] e [SangerContig]

I I I I
[SangerRead} oo [SangerRead} [SangerRead} oo [SangerReadJ

_static/plus.png

_images/SangerContig_hierarchy.png
SangerAlignment

» [SangerContig] " [SangerContig]

| I I |
SangerRead | " " " | SangerRead SangerRead | " " " | SangerRead

_images/SangerContig_plotting_popup.png
X Plotting Chromatogram ...

© Base pairs per row : 100
O Height per row : 200

© Signal Ratio Cutoff: 0.33
© Show trimmed : TRUE

(If 'Signal Ratio Cutoff' is too small, it would need more time to
replot the chromatogram)

_images/SangerContig_fasta_input.png
>Achl_ACHLO@06-09_1_F
CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCT
GGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCA
TCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGA
TTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGT
TTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTG
CGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
>Achl_ACHLO@06-09_2_R
GAGGATGGGGTCTCCACCACCGGCAGGATCAAAGAATGAAGTATTGAGGTTTCGGTCGGTAAGAAGTATGGTAATGGCAC
CTGCTAGCACTGGTAAAGATAGAAGTAGAAGAACAACTGTAATTAGCACAGCTCAGACAAACAGGGGAATTCGTTCAAGA
CGTAATCCTCTTCAACGCATATTAATAACTGTGGTGATAAAATTAATAGCCCCTAGAATAGAAGACGCACCCGCTAAATG
AAGGGAAAAGATGGCTAAATCTACAGACGGGCCTGCGTGGGCAAGATTTCTTGCTAGAGGCGGATAAACAGTTCACCCCG
TACCAGCGCCTTTTTCTACCGCCGCAGAGGACACTAAAAGGATCAGTGATGGGGGAAGTAGTCAGAATCTCATGTTGTTG
AGTCGAGGGAATGCTATATCGGGGGCTCCAAGTATTAAAGGTAAAAGCCAGTTTCCGAATCCCCCGATGAATACAGGCAT
TACTAGAAAGAAGATTATTACAAATGCGTGTGCAGTAACGATAGTATTGTATAGTTGGTCTCTGCCCAGGAACGCTCCTG
GTTGTCTTAGCTCGATTCGAATTAGAAGTCTTATACCGGCTCCAACCATTCCTGCTCAGACGCCCAGAATAAAATATAAA

_static/up.png

_images/SangerContig_file_structure.png
<

o
@
Z

Achl_RBNII384-13_1_F.ab1

Achl_RBNII384-13_2_R.ab1

Achl_RBNII395-13_1_F.ab1

Achl_RBNII395-13_2_R.ab1

Achl_RBNII396-13_1_F.ab1

Achl_RBNII396-13_2_R.ab1

Achl_RBNII397-13_1_F.ab1

Achl_RBNII397-13_2_R.ab1

_images/SangerContig_shiny_SangerContig_page.png
4\ SangerContig
Overview

@ Forward SangerReads ¢

[Re-calculate Contig
= 1Forward SangerRead

@ Reverse SangerReads ¢

» Output Directory: Jvar/folders/33/7v38]djd2874jcxb6l71m00h0000gn/T//Rtmpzbe2zF

» Raw ABI Parent /Users/chaokuan-hao/Desktop/tmp/ACHLO/
Directory:

» Contig Name: Achl_ACHL0O006-09

» Trimming Method: Method 1: 'Modified Mott Trimming'

» Forward Suffix _[0-9]*_F.abl
RegExp:

» Forward Read 1

Number:

» Reverse Suffix _[0-9]*_R.abl

RegExp:

_images/SangerContig_shiny_SangerRead_page.png
4 SangerContig
Overview

@ Forward SangerReads AC h I_AC H LOOO6—09_1_ F. a b l

(full path: /Users/chaokuan-hao/Desktop/tmp/ACHLO//Achl_ACHLO006-09_1_F.abl)
= 1Forward SangerRead

@ Reverse SangerReads

= Primary Sequence

1|2 14 15 16 1 19 [20 | 21 |22 {23 |24 |25 (26 |27 |28 (29 | 30 | 31 | 32

3 4 5 6 10 11 12 13 7 18
e I TS S M < I ¢ ¢ ¢ ¢ o [c [o B <

= Secondary Sequence

14 15 16 1 19 [20 | 21 |22 {23 |24 |25 (26 |27 |28 (29 | 30 | 31 | 32

1 2 3 4 5 6 10 11 12 13 7 18
I T S S M < I ¢ ¢ ¢ ¢ o [c [o B <

= Quality Phred Score

1|2 (3|4|5 |6 |7 (8|9 |10(11|12 |13 (14|15 |16 |17 |18 (19|20 |21 (22|23 |24 |25 |26 (27|28 |29 |30]31]|32
1 2 4 1 8 14 6 15 28 29 20 33 31 8 26 23 57 13 13 18 31 30 28 22 19 53 36 31 57 45 45 36 57

_images/SangerContig_shiny_alignment_differenceDF.png
Alignment

1_Read_Ach1_ACHL0@06-09_1_F.abl
2_Read_Achl1_ACHL0006-09_2_R.abl
Consensus

Consensus

20 40 60 &

TTATATTTTATTCTGGGCGTCTGAGCAGGAATGY

[TATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGGAATGE
[TATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGGAATGE

[TATATCGACGGCCAGTGGTCAACAAATCATAAAGATATTGGAACTTTATATTTTATTCTGGGCGTCTGAGCAGGAATGE

Differences Data frame

Show| 10 7 entries Search:
name pairwise.diffs.to.consensus unused.chars
1 1_Read_Achl_ACHLO006-09_1_F.ab1 2 0
2 2_Read_Achl_ACHLO006-09_2_R.ab1l 2 0
Showing 1 to 2 of 2 entries Previous il Next

_images/SangerContig_shiny_chromatogram_panel.png
© Chromatogram:

© Chromatogram Input

Base Number Per Row

_% Signal Ratio Cutoff 25 674

5 25 45 65 85 105 125 145 165 185200
Trimming Start Pos Trimming End Pos
0.33

Height Per Row

50 E?IE; 600

50 105 160 215 270 325 380 435 490 545 600

) Show trimmed region

Apply Chromatogram Parameters

& Chromatogram Output

TGAGCAG GAN GGT T GG AGCCGG TATAAGACTT CTAATTCG AAT CGAGCTAA GACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCG
TGAGCAG GAN GGT T GG AGCCGGTATAAGACTT CTAATTCG AAT CGAGCTAA GACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCG

L_nMLa.A_LanbJLaAN

_images/SangerContig_shiny_dendrogram.png
Dendrogram

1_Read_Achl_ACHLO006-09_1_F.ab1

2_Read_Achl_ACHLO006-09_2_R.ab1

0.0000

Show | 10 % |entries

0.0005

0.0010

Search:

0.0015

cluster

1_Read_Achl_ACHLO006-09_1_F.abl

2_Read_Achl_ACHLO006-09_2_R.abl

1

Showing 1 to 2 of 2 entries

Previous . Next

_images/SangerContig_shiny_bp_quality_plot.png
Quality Trimming Plot

Phred Quality Score

80

70

60

50

40

30

20

10

Quality Each BP [Trimmed Read [l Whole Read

—

[
(600D D G D
.r ° oee ...- e e e o o e ocen ° 00 CGENEDGED (Des® ¢ 000 B e
e 00 ..m m []
¢ () L] L J ° ° o o .”.
o = ° ° e . e e © o® .. .l o,
° ¢ o °, ... ° o ..'.
° . . -"- Voo P
° ° °
." ° e ° . © o - ..;. o
. e ° ole B
o d o ° L4 °
L J
r‘.nming Strat Trimming End | o <
‘. BP Index BP Index |%®®
; £
I
0 100 200 300 400 500 600 700

Base Pair Index

_images/SangerContig_shiny_chromatogram.png
i

|

|

ATAA GACTT CTAA TTCG AAT CGA

Mﬂ-

ATAA GACTT CTAA TTCG AAT CGA

& Chromatogram Output

I

Mhd

J\

|

—
SNNNSSAN
Sy
//.lolfl%&ﬂ/

AN ==

SSoUNSS
S ———

s

/
%
),

7
X
7

4&

GGAAACTGGCTTT TACC TTTAATACTTGGAGCCCCCGAT ATAGCATT

hhlhﬂhﬂhlﬂmmmdhLMn il

GGAAACTGGCTTT TACC TTTAATACTTGGAGCCCCCGAT ATAGCATT

CTAGTAATGCCTG TATTCATCG GGGGATTC
TAGTAATGCCTG TATTCATCG GGGGATTC

gsl

_images/SangerContig_shiny_save_popup.png
sangeranalyseR SangerContig Overview Page Save S4instance | Close Ul

A .
@ SangerConti . . _
ger-ontie O Basic Information:
Overview
S
Re-calculate Contig

@ Reverse SangerReads ¢

» Output Directory:
» Raw ABI Parent © New S4 object is store as:

Directory:

"/var/folders/33/7v38jdjd2874jcxb6l71m0

» Contig Name: 0h0000gn/T//Rtmpzbe2zF/SangerContig.
» Trimming Method: Rda’

» Forward Suffix RegExp:
» Forward Read Number: >> Run

» Reverse Suffix RegExp: readRDS ("/var/folders/33/7v38jdjd2874jcxb
6171m00h0000gn/T//Rtmpzbe2zF/SangerContig

» Reverse Read Number: .Rda")

to load saved S4 object into R environment

Contig Parameters

p) 20 0.5

MinReadsNum MinReadLength MinFractioncCall

_images/SangerContig_shiny_trimmed_before_after.png
® Trimmed Result Output

Before Trimming

702 52.88 1

Raw Segence Len Raw Mean Quality Score Raw Min Quality Score

After Trimming

699 53.08 1

Trimmed Seqence Length Trimmed Mean Quality Score Trimmed Min Quality Score

2 701 99.57 %

Trimming Start Pos Trimming End Pos Remaining Ratio

_images/SangerContig_shiny_indelsDF_stopcodonsDF.png
Indels Data frame .

Show entries Search:

read insertions deletions distance

/Users/chaokuan-hao/Desktop/tmp/ACHLO//Achl_ACHLO006-

3 0 0.280172413793103
09_1_F.abl

/Users/chaokuan-hao/Desktop/tmp/ACHLO//Achl_ACHLO006-
09_2_R.abl

Showing 1 to 2 of 2 entries Previous Next

Stop Codons Data frame -

Show entries Search:

4 0 0.25974025974026

read stop.codons
1 /Users/chaokuan-hao/Desktop/tmp/ACHLO//Achl_ACHLO006-09_1_F.abl 8
2 /Users/chaokuan-hao/Desktop/tmp/ACHLO//Achl_ACHLO006-09_2_R.ab1l 5

Showing 1 to 2 of 2 entries Previous Next

_images/SangerContig_shiny_samples_distance.png
Samples Distance

0.003

0.002

Achl_ACHLO006-09_2_R.ab1 -

0.001

Achl_ACHLO006-09_1_F.ab1-

1]
Achl_ACHLO006-09_1_F.ab1 Achl_ACHLO006-09_2_R.ab1

Show entries Search:

1_Read_Achl_ACHLO006-09_1_F.ab1 2_Read_Achl_ACHLO006-09_2_R.ab1l

1_Read_Achl_ACHLO006-09_1_F.abl 0 0.00309278788789653

2_Read_Achl_ACHLO006-09_2_R.abl 0.00309278788789653 0

Showing 1 to 2 of 2 entries Previous 1 Next

_images/SangerContig_shiny_trimming_1.png
O Quality Report: _

© Trimming Parameters Input

@ Your trimming method selection : 'Modified Mott Trimming'

le-04

Cutoff Score

Input Value

le-04

_images/SangerContig_shiny_trimming_2.png
O Quality Report: -

© Trimming Parameters Input

@ Your trimming method selection : 'Trimmomatics Sliding Window Trimming'

20 15

Cutoff Quality Score Sliding Window Size

Input Value Input Value

20 15

_images/SangerContig_shiny_trimmed_sequences.png
© DNA & Amino Acid Sequence (Before Trimming):

= Primary Sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

v e I | I S S < B ¢ ¢ ¢ o [o Ml e el

= Secondary Sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

I < | < B e ¢ ¢ o e ol s

= Quality Phred Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 4 1 8 14 6 15 28 29 20 33 31 8 26 23 57 13 13 18 31 30 28 22 19 53 36 31 57 45 45 36 57

_images/SangerRead_hierarchy.png
» [SangerRead] - [SangerRead] [SangerReadJ == [SangerRead]

_images/SangerRead_qualityBasePlot.png
Phred Quality Score

Quality Each BP [l Trimmed Read [l Whole Read

80
70
60
'] ' ;: ®oe o o o0 L X J Iy Xl J '.. [] o o, ‘
L] e e ' L]
50 ’... oo 2 o ¢ .o: "...." YA c.' o e " .o
oo ®e o g ° -
¢ o) o M. = ol JEoe
0 o, =2 . . . ° o o.. .. g oo a..': o
e ° . . o [' o ®® o %y .
J,. . R EINEEEE ' W X
30 ° * o % e
{o‘o ° e ,°
° °
[] d []
20 rr ° [
Trimming Strat Trimming Endl
© BP Index BP Index f.
10 oo o
° %
f °
0
0 100 200 300 400 500 600 700

Base Pair Index

_images/SangerRead_fasta_input_file.png
>Ach1_ACHL0Q06-09_1 Forward
CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCT
GGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCA
TCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGA
TTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGT
TTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTG
CGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG

_images/SangerRead_file_structure.png
Achl_RBNII397-13_1_F.ab1

_images/sangeranalyseR_csv_file_sangeralignment_ab1.png
reads","direction", "contig"

Achl ACHLO006-09 1 F.abl","F","Achl ACHLO006-09"
Achl_ACHLO006-09 2 R.abl","R","Achl ACHLO006-09"
Achl_ACHLO007-09_1 F.abl","F","Achl ACHLO007-09"
Achl_ACHLO007-09_2 R.abl","R","Achl ACHLO007-09"
Achl_ACHLO040-09 1 F.abl","F","Achl ACHLO040-09"
Achl_ACHLO040-09 2 R.abl","R","Achl ACHLO040-09"
Achl ACHLO041-09 1 F.abl","F","Achl ACHLO041-09"
Achl_ACHLO041-09 2 R.abl","R","Achl ACHLO041-09"
Achl RBNII384-13 1 F.abl","F","Achl RBNII384-13"
Achl RBNII384-13 2 R.abl","R","Achl RBNII384-13"
Achl RBNII395-13 1 F.abl","F","Achl RBNII395-13"
Achl RBNII395-13 2 R.abl","R","Achl RBNII395-13"
"Achl RBNII396-13 1 F.abl","F","Achl RBNII396-13"
"Achl RBNII396-13 2 R.abl","R","Achl RBNII396-13"
Achl RBNII397-13 1 F.abl","F","Achl RBNII397-13"
Achl RBNII397-13 2 R.abl","R","Achl RBNII397-13"

_images/bioconductor.png
Bloconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 3.12 » Software Packages » sangeranalyseR (development version)

sangeranalyseR

_images/quickstart_SangerAlignment_Shiny_dashboard.png
Save Sainstance

sangeranalys SangerAlignment Overview Page

Input Parameters

4 SangerAlignment
Overview

1 SangerContig

@ Forward SangerReads

@ Revers erR < » Output Directory: Jvar/folders/33/7v38]djd2874jcxb6(71m00h0000gn/ T//RtmpGkJZBm
SangerContig » Raw ABI Parent Directory: Library/Frameworks/R.framework/Versions/4.0/Resources/library/sangeranalyseR/extdata/Allolobophora_chloroti
» Trimming Method: Method 1: "Modified Mott Trimming'
SAnES IRt » Forward Suffix RegExp: _[0-9)+_F+
T » Reverse Suffix RegExp: _[09)+ R+
» Contigs Number: 4

Alignment Parameters

0.5

MaxFractionLost

Genetic Code Data Frame

