
sangeranalyseR

Oct 06, 2022

Contents

1 Why sangeranalyseR 1

2 Main features 3

3 What sangeranalyseR doesn’t do 5

4 User Manual 7

5 User support 9

6 Key contributors 11

7 Documentation 13
7.1 Installation . 13

7.1.1 System requirements . 13
7.1.2 Install from Bioconductor . 13
7.1.3 Install the development version . 14
7.1.4 Where to go from here ? . 14

7.2 Quick Start Guide . 15
7.2.1 Super-Quick Start (3 lines of code) . 15
7.2.2 Step 1: Prepare your input files . 15
7.2.3 Step 2: Load and analyse your data . 15
7.2.4 Step 3 (optional): Explore your data . 16
7.2.5 Step 4: Output your aligned contigs . 16
7.2.6 Step 5 (optional): Generate an interactive report . 16
7.2.7 A Reproducible Example . 16

7.3 Beginners Guide . 18
7.3.1 Step 1: Preparing your input files . 19
7.3.2 Step 2: Loading and analysing your data . 20
7.3.3 Step 3: Exploring your data with the Shiny app . 20
7.3.4 Step 4: Outputting your aligned contigs . 21
7.3.5 Step 5: Generating an interactive report . 21
7.3.6 What’s next ? . 22

7.4 Advanced User Guide - SangerRead (AB1) . 22
7.4.1 Preparing SangerRead AB1 input . 23
7.4.2 Creating SangerRead instance from AB1 . 23
7.4.3 Visualizing SangerRead trimmed read . 25

i

7.4.4 Updating SangerRead quality trimming parameters . 25
7.4.5 Writing SangerRead FASTA file (AB1) . 25
7.4.6 Generating SangerRead report (AB1) . 26
7.4.7 Code summary (SangerRead, ab1) . 26

7.5 Advanced User Guide - SangerContig (AB1) . 28
7.5.1 Preparing SangerContig AB1 inputs . 28
7.5.2 Creating SangerContig instance from AB1 . 31
7.5.3 Updating SangerContig quality trimming parameters . 35
7.5.4 Launching SangerContig Shiny app . 35
7.5.5 Writing SangerContig FASTA files (AB1) . 43
7.5.6 Generating SangerContig report (AB1) . 44
7.5.7 Code summary (SangerContig, AB1) . 44

7.6 Advanced User Guide - SangerAlignment (AB1) . 47
7.6.1 Preparing SangerAlignment AB1 input . 47
7.6.2 Creating SangerAlignment instance from AB1 . 51
7.6.3 Updating SangerAlignment quality trimming parameters 56
7.6.4 Launching SangerAlignment Shiny app . 56
7.6.5 Writing SangerAlignment FASTA files (AB1) . 64
7.6.6 Generating SangerAlignment report (AB1) . 66
7.6.7 Code summary (SangerAlignment, AB1) . 66

7.7 Advanced User Guide - SangerRead (FASTA) . 69
7.7.1 Preparing SangerRead FASTA input . 69
7.7.2 Creating SangerRead instance from FASTA . 69
7.7.3 Writing SangerRead FASTA files (FASTA) . 71
7.7.4 Generating SangerRead report (FASTA) . 71
7.7.5 Code summary (SangerRead, fasta) . 71

7.8 Advanced User Guide - SangerContig (FASTA) . 72
7.8.1 Preparing SangerContig FASTA input . 73
7.8.2 Creating SangerContig instance from FASTA . 76
7.8.3 Writing SangerContig FASTA files (FASTA) . 79
7.8.4 Generating SangerContig report (FASTA) . 80
7.8.5 Code summary (SangerContig, FASTA) . 80

7.9 Advanced User Guide - SangerAlignment (FASTA) . 81
7.9.1 Preparing SangerAlignment FASTA input . 82
7.9.2 Creating SangerAlignment instance from FASTA . 86
7.9.3 Writing SangerAlignment FASTA files (FASTA) . 89
7.9.4 Generating SangerAlignment report (FASTA) . 89
7.9.5 Code summary (SangerAlignment, FASTA) . 90

7.10 Q & A . 92
7.10.1 What is a regular expression? . 92
7.10.2 How to deal with secondary peaks . 92
7.10.3 How to work with FASTA files for input . 92

7.11 User Manual (functions) . 92
7.11.1 SangerRead Constructor Parameters . 92
7.11.2 SangerContig Constructor Parameters . 93
7.11.3 SangerAlignment Constructor Parameters . 95

7.12 Frequently Asked Questions . 97
7.12.1 Q: What is the difference between two different trimming methods? 97

7.13 Conclusion . 98
7.14 License . 98
7.15 Contact . 98
7.16 Help . 98

7.16.1 Inside help test . 98

ii

CHAPTER 1

Why sangeranalyseR

sangeranalseR is an R package that provides fast, flexible, and reproducible workflows for assembling your sanger
seuqencing data into contigs.

It adds to a list of already widely-used tools, like Geneious, CodonCode Aligner and Phred-Phrap-Consed;. What
makes it different from these tools is that it’s free, it’s open source, and it’s in R.

1

https://www.geneious.com
https://www.codoncode.com/aligner/
http://www.phrap.org/phredphrapconsed.html

sangeranalyseR

2 Chapter 1. Why sangeranalyseR

CHAPTER 2

Main features

• Pure R environment: As far as we know, this is the first package that allows end-to-end analysis of Sanger
sequencing data in a pure R environment.

• Automated data analysis: Given appropriately-named input files, a lot of the data analysis can be automated.
Once you’ve set up an appropriate workflow for your data, you can run it again in seconds.

• Interactive Shiny apps: Local Shiny apps mean you visualize the data at many levels, view chromatograms,
and adjust things like trimming parameters.

• Exporting and importing FASTA files: sangeranalyseR is primarily designed with loading raw ab1 files in
mind, but it can also load sequencesin FASTA format. Aligned results and trimmed reads can be written into
FASTA file format.

• Thorough report: A single command creates a comprehensive interactive HTML report that provides a huge
amount of detail on the analysis.

3

sangeranalyseR

4 Chapter 2. Main features

CHAPTER 3

What sangeranalyseR doesn’t do

One really important feature that sangeranalyseR doesn’t have is the ability to edit bases by hand. R is just not the
right language for this. If you need to edit your reads by hand, we suggest doing that in another tool like Geneious,
then exporting your reads as FASTA files and following the instructions for using sangeranalyseR with FASTA input.

5

https://www.geneious.com

sangeranalyseR

6 Chapter 3. What sangeranalyseR doesn’t do

CHAPTER 4

User Manual

If you are already familiar with sangeranalyseR and want to have a quick look at function signatures, please refer to
sangeranalyseR user manual

7

https://bioconductor.org/packages/devel/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

8 Chapter 4. User Manual

CHAPTER 5

User support

Please go through the Documentation below first. If you have questions about using the package, a bug report, or a
feature request, please use the GitHub issue tracker here:

https://github.com/roblanf/sangeranalyseR/issues

9

https://github.com/roblanf/sangeranalyseR/issues

sangeranalyseR

10 Chapter 5. User support

CHAPTER 6

Key contributors

The first (and not very good) version of the package was written by Rob Lanfear (at ANU in Australia), in collaboration
with Kirston Barton and Sarah Palmer (then both at the University of Sydney). The second and far far better version
of the package was written by Kuan-Hao (Howard) Chao at ANU. (This section was written by Rob Lanfear, lest you
think Howard wrote it!)

11

sangeranalyseR

12 Chapter 6. Key contributors

CHAPTER 7

Documentation

7.1 Installation

7.1.1 System requirements

• R >= 4.0.0 (current)

• Rstudio (recommended)

7.1.2 Install from Bioconductor

sangeranalyseR is on Bioconductor 3.12 development now.

To install this package, start R (version “4.0”) and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

The following initializes usage of Bioc devel
BiocManager::install(version='devel')

BiocManager::install("sangeranalyseR")

13

https://rstudio.com
https://bioconductor.org/packages/devel/bioc/html/sangeranalyseR.html

sangeranalyseR

Fig. 1: Figure 1. sangeranalyseR on Bioconductor 3.12 development.

7.1.3 Install the development version

If you haven’t installed the devtools package before, please install it first:

install.packages("devtools")

Then run the following code in your R console to install the newest version from Github.

library(devtools)

Install the release version
install_github("roblanf/sangeranalyseR", ref = "master")

Install the development version
install_github("roblanf/sangeranalyseR", ref = "develop")
library(sangeranalyseR)

After installing sangeranalyseR, load it in R console.

library(sangeranalyseR)

Now, you are ready to go !

7.1.4 Where to go from here ?

Please continue to the Quick Start Guide or the more detailed Beginners Guide.

14 Chapter 7. Documentation

sangeranalyseR

7.2 Quick Start Guide

This page provides simple quick-start information for using sangeranalyseR with AB1 files. Please read the Beginners
Guide page for more details on each step.

If you haven’t already, please follow the steps in the Installation page to install and load sangeranalyseR.

7.2.1 Super-Quick Start (3 lines of code)

The most minimal example gets the job done in three lines of code. More details below.

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "./my_data/",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

writeFasta(my_aligned_contigs)

generateReport(my_aligned_contigs)

7.2.2 Step 1: Prepare your input files

Put all your AB1 files in a directory ./my_data/. The directory can be called anything.

Name your files according to the convention contig_index_direction.ab1. E.g.
Drosophila_COI_1_F.ab1 and Drosophila_COI_2_R.ab1 describes a forward and reverse read to
assemble into one contig. You can have as many files and contigs as you like in one directory.

7.2.3 Step 2: Load and analyse your data

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "./my_data/",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_F.ab1$")

This command loads, trims, builds contigs, and aligns contigs. All of these are done with sensible default values,
which can be changed. I

7.2. Quick Start Guide 15

sangeranalyseR

7.2.4 Step 3 (optional): Explore your data

launchApp(my_aligned_contigs)

This launches an interactive Shiny app where you can view your analysis, change the default settings, etc.

7.2.5 Step 4: Output your aligned contigs

writeFasta(my_aligned_contigs)

This will save your aligned contigs as a FASTA file.

7.2.6 Step 5 (optional): Generate an interactive report

generateReport(my_aligned_contigs)

This will save a detailed interactive HTML report that you can explore.

7.2.7 A Reproducible Example

If you are still confused about how to run sangeranalyseR and want to check whether it produces the results that you
want, then check this section for more details. Here we demonstrate a simple and reproducible example for using
sangeranalyseR to generate a consensus read from 8 sanger ab1 files (4 contigs and each includes a forward and a
reverse read).

1. Prepare your input files & loading

The data of this example is in the sangeranalyseR package; thus, you can simply get its path from the library.

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica', 'ACHLO')

2. Load and analyse your data

Run the following on-liner to create the sanger alignment object.

16 Chapter 7. Documentation

sangeranalyseR

ACHLO_contigs <- SangerAlignment(ABIF_Directory = parentDir,
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

Following is the R shell output that you will get.

3. Explore your data

Launch the Shiny app to check the visualized results.

launchApp(ACHLO_contigs)

Following is the R shell output that you will get.

And a Shiny would popup as showed in Figure 1

Fig. 2: Figure 1. SangerAlignment Shiny dashboard.

4. Output your aligned contigs

Write each contig and the aligned consensus read into FASTA files.

7.2. Quick Start Guide 17

sangeranalyseR

writeFasta(ACHLO_contigs)

Following is the R shell output that you will get.

And you will get three FASTA files:

(1) Sanger_all_trimmed_reads.fa

(2) Sanger_contigs_alignment.fa

(3) Sanger_contigs_unalignment.fa

5. Generate an interactive report

Last but not least, generate an Rmarkdown report to store all the sequence information.

generateReport(ACHLO_contigs)

For more detailed analysis steps, please choose one the following topics :

• Beginners Guide

• Advanced User Guide - SangerRead (AB1)

• Advanced User Guide - SangerContig (AB1)

• Advanced User Guide - SangerAlignment (AB1)

• Advanced User Guide - SangerRead (FASTA)

• Advanced User Guide - SangerContig (FASTA)

• Advanced User Guide - SangerAlignment (FASTA)

7.3 Beginners Guide

If you haven’t already, please follow the steps in the Installation page to install and load sangeranalyseR.

This guide is for users who are starting with AB1 (.ab1) files. If you are starting with FASTA (.fasta or .fa)
files, please read through this guide then follow the slightly different path for those starting with FASTA data here:
Advanced User Guide - SangerAlignment (FASTA).

18 Chapter 7. Documentation

sangeranalyseR

7.3.1 Step 1: Preparing your input files

sangeranalyseR takes as input a group of AB1 files, which it then groups together into contigs. Once the individual
contigs are built, all the contigs are aligned and a simple phylogenetic tree is made. This section explains how you
should organize your files before running sangeranalyseR.

First, prepare a directory and put all your AB1 files inside it (there can be other files in there too, sangeranalyseR will
ignore anything without a AB1 file extension). Files can be organised in as many sub-folders as you like. sangeranal-
yseR will recursively search all the directories inside ABIF_Directory and find all files that end with AB1.

Second, give sangeranalyseR the information it needs to group reads into contigs. To do this, sangeranalyseR needs
two pieces of information about each read: the direction of the read (forward or reverse), and the contig that it should
be grouped into. There are two ways you can give sangeranalyseR this information:

• using the file name itself

• using a three-column csv file

We’ll cover both approaches using the following example. Imagine you have sequenced four contigs with a forward
and reverse read, all from the same species, but from different locations. In this case you might have arranged your
data something like Figure_1, below.

Fig. 3: Figure 1. Input ab1 files inside the parent directory, ./tmp/.

When using the filenames to group the reads, you’ll need to specify three parameters: ABIF_Directory,
REGEX_SuffixForward, and REGEX_SuffixReverse:

• ABIF_Directory: this is the directory that contains all the AB1 files. In this example, the reads are in the
/tmp/ directory, so for convenience we’ll just say that ABIF_Directory should be /path/to/tmp/. In
your case, it should be the absolute path to the folder that contains your reads.

• REGEX_SuffixForward: This is a regular expression (if you don’t know what this is, don’t panic - it’s just
a way of recognising text that you will get the hang of fast), which tells sangeranalyseR how to use the end of
a filename to determine a forward read. All the reads that are in forward direction have to contain this in their
filename suffix. There are lots of ways to do this, but for this example, one uesful way to do it is _[0-9]*_F.
ab1$. This regular expression just says that the forward suffix is an underscore, followed at least one digit from
0-9, followed by another underscore then ‘F’, and ends with .ab1. The regex does not have to match to the end
of the file name, but it’s important to realise is that whatever comes before the part of the filename captured by
this regex is by default the contig name. So in this case the regex also determines that the contig name for the
first read is ‘Achl_RBNII397-13’.

7.3. Beginners Guide 19

sangeranalyseR

• REGEX_SuffixReverse: This is just the same as for the forward read, except that it determines the suffix
for reverse reads. All the reads that are in reverse direction have to contain this in their filename suffix. In this
example, its value is _[0-9]*_R.ab1$. I.e. all we’ve done is switch the ‘F’ in the forward read for an ‘R’ in
the reverse read.

If you don’t want to use the regex method, you can use the csv method instead. To use this method, just set
processMethod parameter to csv and prepare an input .csv file with three columns:

• reads: the full file name (just the name, not the path) of the read to be grouped

• direction: “F” or “R” for forward and reverse reads, respectively

• contig: the name of the contig that reads should be grouped into

Following is an example of how you should organize your csv file in this example:

7.3.2 Step 2: Loading and analysing your data

After preparing the input files, you can create and align your contigs with just a single line of R code. In technical
jargon, we are creating a SangerAlignment S4 instance.

It’s important to note that this function is designed to be both simple and flexible. It’s simple in that it has sensible
defaults for all the usual things like trimming reads. But it’s flexible in that you can change any and all of these defaults
to suit your particular data and analyses. Here we just cover the simplest usage. The more flexible things are covered
in the Advanced sections of the user guide.

So, let’s create our contigs from our reads, and align them.

Here’s how to do it using the regex method:

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "/path/to/tmp/",
processMethod = "REGEX",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$")

Here’s how to do it using the csv file method

my_aligned_contigs <- SangerAlignment(ABIF_Directory = "/path/to/tmp/",
processMethod = "CSV",
CSV_NamesConversion = "/path/to/csvfile")

my_aligned_contigs is now a SangerAlignment S4 object which contains all of your reads, all the information
on how they were trimmed, processed, and aligned, their chromatograms, and an alignment and phylogeny of all of
your assembled contigs. The next section explains how to start digging into the details of that object.

7.3.3 Step 3: Exploring your data with the Shiny app

sangeranalseR includes a Shiny app that allows you to see, interact with, and adjust the parameters of your aligned
contigs. For example, you can adjust things like the trimming parameters, and see how that changes your reads and
your contigs.

20 Chapter 7. Documentation

sangeranalyseR

To launch the interactive Shiny app use the launchApp function as follows

launchApp(my_aligned_contigs)

Fig. 4: Figure 2. SangerAlignment Shiny app user interface.

Figure_2 shows what the Shiny app looks like. On the left-hand side of Figure_2, there is a navigation menu that you
can click to get more detail on every contig and every read. You can explore this app to get a lot more detail and make
adjustments to your data. (Note that sangeranalyseR doesn’t allow for editing individual bases of reads though - that’s
just not something that R is good for).

7.3.4 Step 4: Outputting your aligned contigs

Once you’re happy with your aligned contigs, you’ll want to save them somewhere.

The following function can write the SangerAlignment object into FASTA files. You just need to tell it where with the
outputDir argument. Here we just wrote the alignment to the same folder that contains our reads.

writeFasta(my_aligned_contigs, outputDir = "/path/to/tmp/")

7.3.5 Step 5: Generating an interactive report

Last but not least, it is useful to store all the results in a report for future reference. You can generate a detailed report
by running the following one-line function. Figure_3 and Figure_4.

generateReport(my_aligned_contigs)

7.3. Beginners Guide 21

sangeranalyseR

Fig. 5: Figure 3. An alignment of all contigs in the SangerAlignment object.

Fig. 6: Figure 4. A phylogenetic tree with contigs as the leaf nodes. This can help diagnose any issues with your
contigs.

7.3.6 What’s next ?

Now you’ve finished the Beginners Guide, you should have a good overview of how to use the package. To dig a lot
deeper into what you can do and why you might bother, there are also a set of advanced guides that focus on the three
levels at which you can analyse Sanger data in the sangeranalyseR package. You can analyse individual reads with the
SangerRead object, individual contigs with the SangerContig object, and alignments of two or more contigs (as we
focussed on in this intro) with teh SangerAlignment object.

If you want to start the analysis from AB1 files, please choose the analysis level and read the following three links.

• Advanced User Guide - SangerRead (AB1)

• Advanced User Guide - SangerContig (AB1)

• Advanced User Guide - SangerAlignment (AB1)

If you want to start the analysis from FASTA files, please choose the analysis level and read the following three links.

• Advanced User Guide - SangerRead (FASTA)

• Advanced User Guide - SangerContig (FASTA)

• Advanced User Guide - SangerAlignment (FASTA)

7.4 Advanced User Guide - SangerRead (AB1)

SangerRead is in the bottommost level of sangeranalyseR (Figure_1), and each SangerRead object corresponds to
a single read (one AB1 file) in a Sanger sequencing experiment. SangerRead class extends sangerseq class from
sangerseqR package and contains input parameters and results of quality trimming and chromatogram. In this section,
we are going to go through detailed sangeranalyseR data analysis steps in SangerRead level with AB1 file input.

Fig. 7: Figure 1. Hierarchy of classes in sangeranalyseR, SangerRead level.

22 Chapter 7. Documentation

https://www.bioconductor.org/packages/release/bioc/html/sangerseqR.html

sangeranalyseR

7.4.1 Preparing SangerRead AB1 input

The main input file format to create SangerRead instance is AB1. Before starting the analysis, users need to prepare
one target AB1 file, and in this example, it is in the sangeranalyseR package; thus, you can simply get its path by
running the following codes:

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFN <- file.path(inputFilesPath,

"Allolobophora_chlorotica",
"ACHLO",
"Achl_ACHLO006-09_1_F.ab1")

The only hard regulation of the filename, Achl_ACHLO006-09_1_F.ab1 in this example, is that the input file
must have .ab1 as its file extension. There are some suggestions about the filename in the note below:

Note:

• AB1 file should be indexed for better consistency with file-naming regulation for SangerContig and Sanger-
Alignment.

• Forward or reverse direction should be specified in the filename.

Figure_2 shows the suggested file-naming strategy. The filename should contain four main parts: “Contig name”,
“Index number”, “Direction” and “ab1 file extension”.

• “Contig name” : Achl_RBNII397-13

• “Index number” : 1

• “Direction” : F

• “ab1 file extension” : .ab1

Fig. 8: Figure 2. SangerRead filename regulation.

In SangerRead section, it is not compulsory to follow the file-naming regulation because users can directly specify the
filename in input (see Creating SangerRead instance from AB1); however, in the SangerContig and SangerAlignment,
sangeranalyseR will automatically group files, so it is compulsory to have systematic file-naming strategy. For more
details, please read Advanced User Guide - SangerContig (AB1) and Advanced User Guide - SangerAlignment (AB1).
Figure_3 shows the suggested AB1 file-naming regulation.

Fig. 9: Figure 3. Suggested AB1 file-naming regulation - SangerRead.

7.4.2 Creating SangerRead instance from AB1

After preparing the SangerRead input AB1 file, A_chloroticaFFN , the next step is to create a SangerRead in-
stance by running SangerRead constructor function or new method. The constructor function is a wrapper for the

7.4. Advanced User Guide - SangerRead (AB1) 23

sangeranalyseR

new method which makes instance creation more intuitive. The inputs include Basic Parameters, Trimming Param-
eters, and Chromatogram Parameters, and all of them have default values. In the example below, we show both
SangerRead creation methods with important parameters.

using `constructor` function to create SangerRead instance
sangerReadF <- SangerRead(readFeature = "Forward Read",

readFileName = A_chloroticaFFN,
geneticCode = GENETIC_CODE,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE)

using `new` method to create SangerRead instance
sangerReadF <- new("SangerRead",

readFeature = "Forward Read",
readFileName = A_chloroticaFFN,
geneticCode = GENETIC_CODE,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE)

The inputs of SangerRead constructor function and new method are the same. For more details about SangerRead
inputs and slots definition, please refer to the sangeranalyseR reference manual. The created SangerRead instance,
sangerReadF, is used as the input for the following functions.

Inside the R shell, you can run sangerReadF to get basic information of the instance or run
sangerReadF@objectResults@readResultTable to check the creation result of every Sanger read after
sangerReadF is successfully created.

Here is the output of sangerReadF:

SangerRead S4 instance
Input Source : ABIF
Read Feature : Forward Read
Read FileName : Achl_ACHLO006-09_1_F.ab1

Trimming Method : M1
Primary Sequence :

→˓CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
Secondary Sequence :

→˓CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
SUCCESS [2021-12-07 23:31:16] 'Achl_ACHLO006-09_1_F.ab1' is successfully created!

Here is the output of sangerReadF@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource
→˓direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read

24 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

7.4.3 Visualizing SangerRead trimmed read

Before going to Writing SangerRead FASTA file (AB1) and Generating SangerRead report (AB1) pages, it is suggested
to visualize the trimmed SangerRead. Run the qualityBasePlot function to get the result in Figure_4. It shows
the quality score for each base pairs and the trimming start/end points of the sequence.

Fig. 10: Figure 4. SangerRead trimmed read visualization.

qualityBasePlot(sangerReadF)

7.4.4 Updating SangerRead quality trimming parameters

In the previous Creating SangerRead instance from AB1 part, the constructor function applies the quality trimming pa-
rameters to the read. These parameters are not fixed. After instance creation, users can run updateQualityParam
function which will change the QualityReport instance inside the SangerRead and update frameshift amino acid se-
quences.

newSangerRead <- updateQualityParam(sangerReadF,
TrimmingMethod = "M2",
M1TrimmingCutoff = NULL,
M2CutoffQualityScore = 29,
M2SlidingWindowSize = 15)

7.4.5 Writing SangerRead FASTA file (AB1)

After quality trimming, users can write sangerReadF into a FASTA file. Below is the one-liner that needs to be run.
This function, writeFasta, mainly depends on writeXStringSet function in Biostrings R package. Users can

7.4. Advanced User Guide - SangerRead (AB1) 25

https://bioconductor.org/packages/release/bioc/html/Biostrings.html

sangeranalyseR

further set the compression level through it.

writeFasta(sangerReadF,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA)

Users can download the output FASTA file of this example.

7.4.6 Generating SangerRead report (AB1)

Last but not least, users can save sangerReadF into a static HTML report by knitting Rmd files. In this example,
tempdir function will generate a random path.

generateReport(sangerReadF,
outputDir = tempdir())

SangerRead_Report_ab1.html is the generated SangerRead report html of this example. Users can access to ‘Basic
Information’, ‘DNA Sequence’, ‘Amino Acids Sequence’, ‘Quality Trimming’ and ‘Chromatogram’ sections inside this
report.

7.4.7 Code summary (SangerRead, ab1)

(1) Preparing SangerRead AB1 input

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFN <- file.path(inputFilesPath,

"Allolobophora_chlorotica",
"ACHLO",
"Achl_ACHLO006-09_1_F.ab1")

(2) Creating SangerRead instance from AB1

using `constructor` function to create SangerRead instance
sangerReadF <- SangerRead(readFeature = "Forward Read",

readFileName = A_chloroticaFFN)

using `new` method to create SangerRead instance
sangerReadF <- new("SangerRead",

(continues on next page)

26 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/AB1/Achl_ACHLO006-09_1_F/SangerRead_Report_ab1.html

sangeranalyseR

(continued from previous page)

readFeature = "Forward Read",
readFileName = A_chloroticaFFN)

Following is the R shell output that you will get.

(3) Visualizing SangerRead trimmed read

qualityBasePlot(sangerReadF)

(4) Writing SangerRead FASTA file (AB1)

writeFasta(sangerReadF)

Following is the R shell output that you will get.

And you will get one FASTA file:

(1) Achl_ACHLO006-09_1_F.fa

(5) Generating SangerRead report (AB1)

generateReport(sangerReadF)

You can check the html report of this SangerRead example (ABIF).

7.4. Advanced User Guide - SangerRead (AB1) 27

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/AB1/Achl_ACHLO006-09_1_F/SangerRead_Report_ab1.html

sangeranalyseR

7.5 Advanced User Guide - SangerContig (AB1)

SangerContig is in the intermediate level of sangeranalyseR (Figure_1), and each SangerContig instance corresponds
to a contig in a Sanger sequencing experiment. Among its slots, there are two lists, forward and reverse read list,
storing SangerRead in the corresponding direction.

In this section, we are going to go through details about a reproducible SangerContig analysis example with the
AB1 file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerContig
analysis result.

Fig. 11: Figure 1. Hierarchy of classes in sangeranalyseR, SangerContig level.

7.5.1 Preparing SangerContig AB1 inputs

The main input file format to create SangerContig instance is AB1. Before starting the analysis, users need to prepare
one directory containing all AB1 files, and all of them must be in the first layer of that directory. In other words, there
should be no subdirectories. In this example, the data are in the sangeranalyseR package; thus, you can simply get its
path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, "Allolobophora_chlorotica", "RBNII")

The value of parentDir is where all AB1 files are placed. If your operating system is macOS, then its value should
look like this:

And we showed the files under parentDir in Figure_2:

Fig. 12: Figure 2. SangerContig filename regulation.

28 Chapter 7. Documentation

sangeranalyseR

Figure_2 shows the file-naming regulation and hierarchy. In this example, RBNII is the parent directory, and all AB1
files must be under its first layer. There are two ways for users to group their AB1 files which are “regular expression
matching” and “CSV file matching”, and following are instructions of how to prepare and name your AB1 input
files.

(1) “regular expression matching” SangerContig inputs (AB1)

For regular expression matching method, sangeranalyseR will group AB1 files based on their contig names and read
directions in their filenames automatically; therefore, users have to follow the file-naming regulations below:

Note:

• All input files must have .ab1 as its file extension

• All input files must have the same contig name in their filenames.

• Forward or reverse direction has to be specified in the filename.

There are four parameters, ABIF_Directory, contigName, REGEX_SuffixForward, and
REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct
AB1 files and divide them into forward and reverse directions.

Note:

• ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative
path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated
files.

• contigName: this is a regular expression that matches filenames that are going to be included in the Sanger-
Contig analysis. grepl function in R is used.

• REGEX_SuffixForward: this is a regular expression that matches all filenames in forward direction. grepl
function in R is used.

• REGEX_SuffixReverse: this is a regular expression that matches all filenames in reverse direction. grepl
function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is
a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the contigName to exclude unrelated files and then separate
the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. There-
fore, it is important to make sure that all target AB1 files share the same contigName and carefully select your
REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might
accidentally include reverse reads into the forward read list or vice versa, which will make the program generate wrong
results. Therefore, it is important to have a consistent naming strategy. So, how should we systematically name AB1
files? We suggest users to follow the file-naming regulation in Figure_3.

Fig. 13: Figure 3. Suggested AB1 file-naming regulation - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which narrows down the
scope of AB1 files to those we are going to examine. The second part of the regulation is an index. Since there might
be more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same

7.5. Advanced User Guide - SangerContig (AB1) 29

sangeranalyseR

contig group. The third part is a direction which is either ‘F’ (forward) or ‘R’ (reverse). Last but not least, files have
to end with .ab1 file extension.

To make it more specific, let’s go back to the true example. In Figure_2, there are a lot of AB1 files from different
contigs in RBNII (ABIF_Directory). First, we set contigName to "Achl_RBNII384-13" to reduce candi-
dates from eight to two AB1 files, Achl_RBNII384-13_1_F.ab1 and Achl_RBNII384-13_2_R.ab1. Then,
we set REGEX_SuffixForward to "_[0-9]*_F.ab1$" and REGEX_SuffixReverse to "_[0-9]*_R.
ab1$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular expression
rule, Achl_RBNII384-13_1_F.ab1 and Achl_RBNII384-13_2_R.ab1 will be categorized into “forward
read list” and “reverse read list” respectively. The reason why we strongly recommend you to follow this file-naming
regulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F.
ab1$" and "_[0-9]*_R.ab1$", to group reads and reduce chances of error.

After understanding how parameters work, please refer to Creating SangerContig instance from AB1 below to see how
sangeranalseR creates ‘Achl_RBNII384-13’ SangerContig instance.

(2) “CSV file matching” SangerContig inputs (AB1)

For those who are not familiar with regular expression, we provide a second grouping approach, CSV file matching
method. sangeranalyseR will group AB1 files based on the information in a CSV file automatically; therefore, users
have to follow the regulations below:

Note: Here is an example CSV file (Figure_4)

Fig. 14: Figure 4. Example CSV file for SangerContig instance creation.

• There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

• The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

• The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

• The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the
same contig name, and they will be grouped into the same SangerContig instance.

There are three parameters, ABIF_Directory, contigName, and CSV_NamesConversion,that define the
grouping rule to help sangeranalseR to automatically match correct AB1 files and divide them into forward and reverse
directions.

Note:

• ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative
path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated
files.

• contigName: this is a regular expression that matches filenames that are going to be included in the Sanger-
Contig analysis. grepl function in R is used.

• CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

30 Chapter 7. Documentation

sangeranalyseR

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is
written. For “regular expression matching”, rules are writtein in filenames, and thus more naming requirements are
required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on AB1
file-naming.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns),
filter out rows whose “contig” is not the value of contigName parameter, find the names of AB1 files listed in
“reads”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file
(CSV_NamesConversion) and a file directory like Figure_2 (ABIF_Directory) with some AB1 files from
different contigs. In the CSV file, both rows have the contig name "Achl_RBNII384-13", which is what we
need to assign to the contigName parameter. sangeranalyseR then checks and matches “reads” of these two rows,
"Achl_RBNII384-13_1_F.ab1" and "Achl_RBNII384-13_2_R.ab1", in RBNII directory and reduce
candidates from eight to two AB1 files. Last, these two reads are assigned into “forward read list” and “reverse read
list” respectively by the “direction” column.

After understanding how parameters work, please refer to Creating SangerContig instance from AB1 below to see how
sangeranalseR creates ‘Achl_RBNII384-13’ SangerContig instance.

7.5.2 Creating SangerContig instance from AB1

After preparing the input directory, we can create a SangerContig instance by running SangerContig constructor
function or new method. The constructor function is a wrapper for new method and it makes instance creation
more intuitive. Their input parameters are same, and all of them have their default values. For more details about
SangerContig inputs and slots definition, please refer to sangeranalyseR reference manual. We will explain two
SangerContig instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerContig creation (AB1)

The consturctor function and new method below contain four parameters, ABIF_Directory, contigName,
REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. It also
includes important parameters like quality trimming, chromatogram visualization, consensus alignment, and so on.
Run the following code and create my_sangerContig instance.

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",

processMethod = "REGEX",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,

(continues on next page)

7.5. Advanced User Guide - SangerContig (AB1) 31

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

(continued from previous page)

refAminoAcidSeq =
→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",

inputSource = "ABIF",
processMethod = "REGEX",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

In this example, contigName is set to Achl_RBNII384-13, so only Achl_RBNII384-13_1_F.ab1
and Achl_RBNII384-13_2_R.ab1 are selected. Moreover, by regular expression pattern matching,
Achl_RBNII384-13_1_F.ab1 is categorized into the forward list, and Achl_RBNII384-13_2_R.ab1 is
categorized into the reverse read. Both reads are aligned into a contig, my_sangerContig, and it will be used as
the input for the following functions.

Inside the R shell, you can run my_sangerContig to get basic information of the instance or run
my_sangerContig@objectResults@readResultTable to check the creation result of every Sanger read
after my_sangerContig is successfully created.

Here is the output of my_sangerContig:

SangerContig S4 instance
Input Source : ABIF
Process Method : REGEX
ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/Allolobophora_chlorotica/RBNII
(continues on next page)

32 Chapter 7. Documentation

sangeranalyseR

(continued from previous page)

REGEX Suffix Forward : _[0-9]*_F.ab1$
REGEX Suffix Reverse : _[0-9]*_R.ab1$

Contig Name : Achl_RBNII384-13
'minReadsNum' : 2

'minReadLength' : 20
'minFractionCall' : 0.5
'maxFractionLost' : 0.5

'acceptStopCodons' : TRUE
'readingFrame' : 1

Contig Sequence :
→˓AGCAGGATAGTAGGGGCTGGTATAAGACTCCTAATTCGAATTGAGCTAAGACAGCCGGGAGCATTTCTAGGAAGGGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGTCTTAACAACATAAGATTTTGACTCCTTCCCCCATCACTAATCCTTCTAGTATCCTCTGCTGCAGTAGAAAAGGGTGCGGGAACTGGATGAACTGTTTATCCACCCCTAGCAAGAAACATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATTTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTGGGTGCCATTAATTTTATTACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTCCTTCTACTCTTATCTTTACCAGTATTAGCCGGTGCAATTACTATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGACCCTGCTGGAGGCGGAGAT
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-12-07 17:01:18] 'Achl_RBNII384-13' is successfully created!

Here is the output of my_sangerContig@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource
→˓direction
1 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
2 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read

(2) “CSV file matching” SangerContig creation (AB1)

The consturctor function and new method below contain three parameters, ABIF_Directory, contigName, and
CSV_NamesConversion, that we mentioned in the previous section. It also includes important parameters like
quality trimming, chromatogram visualization, consensus alignment, and so on. Run the following code and create
my_sangerContig instance.

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerContig", "names_conversion_
→˓2.csv")

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",

processMethod = "CSV",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
CSV_NamesConversion = csv_namesConversion,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,

(continues on next page)

7.5. Advanced User Guide - SangerContig (AB1) 33

sangeranalyseR

(continued from previous page)

geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",

inputSource = "ABIF",
processMethod = "CSV",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
CSV_NamesConversion = csv_namesConversion,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please
check (2) “CSV file matching” SangerContig inputs (AB1). Then, it will follow rules in the CSV file and create
my_sangerContig. After it’s created, inside the R shell, you can run my_sangerContig to get basic informa-
tion of the instance or run my_sangerContig@objectResults@readResultTable to check the creation
result of every Sanger read after my_sangerContig is successfully created.

Here is the output of my_sangerContig:

SangerContig S4 instance
Input Source : ABIF
Process Method : CSV
ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/Allolobophora_chlorotica/RBNII
CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/ab1/SangerContig/names_conversion_2.csv
Contig Name : Achl_RBNII384-13

'minReadsNum' : 2
'minReadLength' : 20
'minFractionCall' : 0.5
'maxFractionLost' : 0.5

'acceptStopCodons' : TRUE
'readingFrame' : 1

Contig Sequence :
→˓AGCAGGATAGTAGGGGCTGGTATAAGACTCCTAATTCGAATTGAGCTAAGACAGCCGGGAGCATTTCTAGGAAGGGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGTCTTAACAACATAAGATTTTGACTCCTTCCCCCATCACTAATCCTTCTAGTATCCTCTGCTGCAGTAGAAAAGGGTGCGGGAACTGGATGAACTGTTTATCCACCCCTAGCAAGAAACATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATTTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTGGGTGCCATTAATTTTATTACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTCCTTCTACTCTTATCTTTACCAGTATTAGCCGGTGCAATTACTATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGACCCTGCTGGAGGCGGAGAT

(continues on next page)

34 Chapter 7. Documentation

sangeranalyseR

(continued from previous page)

Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-12-07 17:11:48] 'Achl_RBNII384-13' is successfully created!

Here is the output of my_sangerContig@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource
→˓direction
1 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
2 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read

7.5.3 Updating SangerContig quality trimming parameters

In the previous Creating SangerContig instance from AB1 part, the constructor function will apply the quality trimming
parameters to all reads. After creating a SangerContig instance, users can change the trimming parameters by running
updateQualityParam function which will update all reads with the new trimming parameters and redo reads
alignment. If users want to do quality trimming read by read instead of all at once, please move on to the next section,
Launching SangerContig Shiny app page.

newSangerContig <- updateQualityParam(my_sangerContig,
TrimmingMethod = "M2",
M1TrimmingCutoff = NULL,
M2CutoffQualityScore = 20,
M2SlidingWindowSize = 15)

7.5.4 Launching SangerContig Shiny app

We create an interactive local Shiny app for users to go into each SangerRead in SangerContig instance. Users only
need to run one function, launchApp, with previously created instance as input and the SangerContig Shiny app will
pop up. Here, we will go through SangerRead and SangerContig pages.

launchApp(my_sangerContig)

SangerContig page (SC app)

SangerContig page is the initial page of SangerContig Shiny app. Figure 5 shows the overview page of the contig.
Notice that there is a red “Re-calculate Contig” button. Users need to click the button after changing the quality
trimming parameters in order to get the updated information. In SangerContig page, there are two expendable tabs,
“Forward Reads” and “Reverse Reads” storing the corresponding reads on the left-hand side navigation panel in Figure
5. See SangerRead page (SC app) for more details of the subpage.

7.5. Advanced User Guide - SangerContig (AB1) 35

sangeranalyseR

Fig. 15: Figure 5. SangerContig Shiny app initial page - SangerContig page.

The information provided in this page are input parameters and contig results including “genetic code table”, “refer-
ence amino acid sequence”, “reads alignment”, “difference data frame”, “dendrogram”, “sample distance heatmap”,
“indels data frame”, and “stop codons data frame”.

Figure 6 shows reads alignment result and difference data frame. The alignment is generated by AlignSeqs or
AlignTranslation function in DECIPHER package.

Fig. 16: Figure 6. SangerContig page - reads alignment and difference data frame.

Figure 7 shows dendrogram result in both plot and in data frame. The results are generated by TreeLine function
in DECIPHER package.

Figure 8 shows distance between AB1 files. The results are generated by DistanceMatrix function in DECIPHER
package. The heatmap is generated by plot_ly function in plotly package.

Figure 9 shows insertions, deletions and stop codons data frame.

SangerRead page (SC app)

Now, let’s go to the next level which is also the lowest level, SangerRead page. SangerRead page contains all details of
a read including its trimming and chromatogram inputs and results. All reads are in “forward” or “reverse” direction. In
this example, there is one read in each direction and Figure 10 shows “1 Forward Read” page. This page provides basic

36 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/html/DECIPHER.html
https://bioconductor.org/packages/release/bioc/html/DECIPHER.html
https://bioconductor.org/packages/release/bioc/html/DECIPHER.html
https://plot.ly/r/

sangeranalyseR

Fig. 17: Figure 7. SangerContig page - dendrogram.

Fig. 18: Figure 8. SangerContig page - samples distance.

7.5. Advanced User Guide - SangerContig (AB1) 37

sangeranalyseR

Fig. 19: Figure 9. SangerContig page - indels and stop codons data frame.

information, quality trimming inputs, chromatogram plotting inputs etc. Primary/secondary sequences and quality
Phred scores table in this figure are dynamic based on the signalRatioCutoff value for base calling and the
length of them are always same. Another thing to mention is that primary/secondary sequences and the sequences in
the chromatogram in Figure 15 below will always be same after trimming and their color codings for A/T/C/G are
same as well.

Fig. 20: Figure 10. SangerContig Shiny app - SangerRead page

In quality trimming steps, we removes fragment at both ends of sequencing reads with low quality score. It is important
because trimmed reads will improves alignment results. Figure 11 shows the UI for Trimming Method 1 (M1):
‘Modified Mott Trimming’. This method is implemented in Phred. Users can change the cutoff score and click “Apply
Trimming Parameters” button to update the UI. The value of input must be between 0 and 1. If the input is invalid, the
cutoff score will be set to default 0.0001.

Figure 12 shows another quality trimming method for users to choose from, Trimming Method 2 (M2): ‘Trimmomatics
Sliding Window Trimming’. This method is implemented in Trimmomatics. Users can change the cutoff quality score
as well as sliding window size and click “Apply Trimming Parameters” button to update the UI. The value of cutoff
quality score must be between 0 and 60 (default 20); the value of sliding window size must be between 0 and 40

38 Chapter 7. Documentation

http://www.phrap.org/phredphrapconsed.html
http://www.usadellab.org/cms/?page=trimmomatic

sangeranalyseR

Fig. 21: Figure 11. SangerRead page - Trimming Method 1 (M1): ‘Modified Mott Trimming’ UI.

(default 10). If the inputs are invalid, their values will be set to default.

Fig. 22: Figure 12. SangerRead page - Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’ UI.

Figure 13 shows the quality report before and after trimming. After clicking the “Apply Trimming Parameters” button
in Figure 11 or Figure 12, the values of these information boxes will be updated to the latest values.

In Figure 14, the x-axis is the index of the base pairs; the y-axis is the Phred quality score. The green horizontal
bar at the top of the plot is the raw read region and the orange horizontal bar represents the remaining read region.
Both Figure 14 trimming plot and Figure 15 chromatogram will be updated once users change the quality trimming
parameters and click the “Apply Trimming Parameters” button in Figure 15.

If we only see primary and secondary sequences in the table, we will loose some variations. Chromatogram is very
helpful to check the peak resolution. Figure 15 shows the panel of plotting chromatogram. Users can change four
parameters: Base Number Per Row, Height Per Row, Signal Ratio Cutoff, and Show Trimmed
Region. Among them, Signal Ratio Cutoff is a key parameter. If its value is default value 0.33, it indicates
that the lower peak should be at least 1/3rd as high as the higher peak for it count as a secondary peak.

Here is an example of applying new chromatogram parameters. We click “Show Trimmed Region” to set its value from
FALSE to TRUE and click the “Apply Chromatogram Parameters” button. Figure 16 shows the loading notification
popup during base calling and chromatogram plotting.

After replotting the chromatogram, we can see that trimmed region is showed in red striped region. Figure 17 shows
part of the the chromatogram (1 bp ~ 240 bp). Moreover, chromatogram will be replotted when trimmed positions or

7.5. Advanced User Guide - SangerContig (AB1) 39

sangeranalyseR

Fig. 23: Figure 13. SangerRead page - read quality report before / after trimming.

Fig. 24: Figure 14. SangerContig page - quality trimming plot.

40 Chapter 7. Documentation

sangeranalyseR

Fig. 25: Figure 15. SangerContig page - chromatogram panel.

Fig. 26: Figure 16. SangerContig page - loading notification popup during replotting chromatogram.

7.5. Advanced User Guide - SangerContig (AB1) 41

sangeranalyseR

chromatogram parameters are updated.

Fig. 27: Figure 17. SangerContig page - chromatogram with trimmed region showed.

To let users browse the trimmed primary/secondary sequences without finding “Trimming Start Point” and “Trimming
End Point” by themselves, we provide the final trimmed primary/secondary sequences that will be used for reads
alignment with quality scores in table format in Figure 18. Frameshift amino acid sequences are also provided.

Fig. 28: Figure 18. SangerContig page - trimmed primary/secondary sequences and Phred quality score in table
format.

We have updated the trimming and chromatogram parameters for each read. Now, we need to click “Re-calculate
contig” button to do alignment again. Last but not least, we can save all data into a new ‘SangerContig’ S4 instance by
clicking “Save S4 Instance button”. New S4 instance will be saved in Rda format. Users can run readRDS function
to load it into current R environment. Figure 19 shows some hints in the save notification popup.

42 Chapter 7. Documentation

sangeranalyseR

Fig. 29: Figure 19. SangerContig page - saving notification popup.

7.5.5 Writing SangerContig FASTA files (AB1)

Users can write the SangerContig instance, my_sangerContig, to FASTA files. There are four options for users
to choose from in selection parameter.

• reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

• reads_alignment: Writing reads alignment and contig read to a single FASTA file.

• contig: Writing the contig to a single FASTA file.

• all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function
in Biostrings R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerContig,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA,
selection = "all")

Users can download the output FASTA file of this example through the following three links:

(1) Achl_RBNII384-13_reads_unalignment.fa

(2) Achl_RBNII384-13_reads_alignment.fa

(3) Achl_RBNII384-13_contig.fa

7.5. Advanced User Guide - SangerContig (AB1) 43

https://bioconductor.org/packages/release/bioc/html/Biostrings.html

sangeranalyseR

7.5.6 Generating SangerContig report (AB1)

Last but not least, users can save SangerContig instance, my_sangerContig, into a report after the analysis. The
report will be generated in HTML by knitting Rmd files.

Users can set includeSangerRead parameter to decide to which level the SangerContig report will go. Moreover,
after the reports are generated, users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports.
If users only want to generate the contig result, remember to set includeSangerRead to FALSE in order to save
time.

generateReport(my_sangerContig,
outputDir = tempdir(),
includeSangerRead = TRUE)

Here is the generated SangerContig html report of this example (ABIF). Users can access to ‘Basic Information’,
‘SangerContig Input Parameters’, ‘Contig Sequence’ and ‘Contig Results’ sections inside it. Furthermore, users can
also navigate through html reports of all forward and reverse SangerRead in this SangerContig report.

7.5.7 Code summary (SangerContig, AB1)

(1) Preparing SangerContig AB1 inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, "Allolobophora_chlorotica", "RBNII")

(2) Creating SangerContig instance from AB1

(2.1) “Regular Expression Method” SangerContig creation (AB1)

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",

processMethod = "REGEX",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",

(continues on next page)

44 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/AB1/Achl_RBNII384-13/SangerContig_Report.html

sangeranalyseR

(continued from previous page)

inputSource = "ABIF",
processMethod = "REGEX",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerContig creation (AB1)

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerContig", "names_conversion_
→˓2.csv")

using `constructor` function to create SangerContig instance
my_sangerContig <- SangerContig(inputSource = "ABIF",

processMethod = "CSV",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

using `new` method to create SangerContig instance
my_sangerContig <- new("SangerContig",

inputSource = "ABIF",
processMethod = "CSV",
ABIF_Directory = parentDir,
contigName = "Achl_RBNII384-13",
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

Following is the R shell output that you will get.

(3) Updating SangerContig quality trimming parameters

newSangerContig <- updateQualityParam(my_sangerContig,
TrimmingMethod = "M2",
M1TrimmingCutoff = NULL,

(continues on next page)

7.5. Advanced User Guide - SangerContig (AB1) 45

sangeranalyseR

(continued from previous page)

M2CutoffQualityScore = 20,
M2SlidingWindowSize = 15)

(4) Launching SangerContig Shiny app

launchApp(my_sangerContig)

(5) Writing SangerContig FASTA files (AB1)

writeFasta(my_sangerContig)

Following is the R shell output that you will get.

You will get three FASTA files:

(1) Achl_RBNII384-13_reads_unalignment.fa

(2) Achl_RBNII384-13_reads_alignment.fa

(3) Achl_RBNII384-13_contig.fa

(6) Generating SangerContig report (AB1)

generateReport(my_sangerContig)

You can check the html report of this SangerContig example (ABIF).

46 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/AB1/Achl_RBNII384-13/SangerContig_Report.html

sangeranalyseR

7.6 Advanced User Guide - SangerAlignment (AB1)

SangerAlignment is in the toppest level of sangeranalyseR (Figure_1), and each SangerAlignment instance corre-
sponds to an alignment of contigs in a Sanger sequencing experiment. Among its slots, there is a SangerContig list
which will be aligned into a consensus contig. Users can access to each SangerContig and SangerRead inside a
SangerAlignment instance.

In this section, we are going to go through details about a reproducible SangerAlignment analysis example with the
AB1 file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerAlign-
ment analysis result.

Fig. 30: Figure 1. Classes hierarchy in sangeranalyseR, SangerAlignment level.

7.6.1 Preparing SangerAlignment AB1 input

The main input file format to create SangerAlignment instance is AB1. Before starting the analysis, users need to
prepare one directory containing all AB1 files, and they can be either all placed in the first layer of that directory or
be distributed in different subdirectories. In this example, the data are in the sangeranalyseR package; thus, you can
simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica')

The value of parentDir is where all AB1 files are placed. If your operating system is macOS, then its value should
look like this:

And we showed the files under parentDir in Figure_2:

Figure_2 shows the file-naming regulation and hierarchy. In this example, Allolobophora_chlorotica is the
parent directory, and AB1 files are separated into ACHLO and RBNII directories. There are two ways for users to group
their AB1 files which are “regular expression matching” and “CSV file matching”, and following are instructions
of how to prepare and name your AB1 input files.

(1) “regular expression matching” SangerAlignment inputs (AB1)

For regular expression matching method, sangeranalyseR will group AB1 files based on their contig names and read
directions in their filenames automatically; therefore, users have to follow the file-naming regulations below:

Note:

• All input files must have .ab1 as its file extension.

• Input files that are in the same contig group must have the same contig name in their filenames.

• Forward or reverse direction has to be specified in the filename.

7.6. Advanced User Guide - SangerAlignment (AB1) 47

sangeranalyseR

Fig. 31: Figure 2. SangerAlignment filename regulation.

48 Chapter 7. Documentation

sangeranalyseR

There are three parameters, ABIF_Directory, REGEX_SuffixForward, and REGEX_SuffixReverse, that
define the grouping rule to let sangeranalyseR automatically match correct AB1 files and divide them into forward and
reverse directions.

Note:

• ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative
path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated
files.

• REGEX_SuffixForward: this is a regular expression that matches all filenames in forward direction. grepl
function in R is used.

• REGEX_SuffixReverse: this is a regular expression that matches all filenames in reverse direction. grepl
function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is
a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the forward and reverse reads by matching
REGEX_SuffixForward and REGEX_SuffixReverse. Then, sangeranalyseR uses the str_split func-
tion to split and vectorize their filenames into “contig name” and “direction-suffix” two parts. For those having the
same “contig name” will be grouped into the same contig.

Therefore, it is important to have a consistent naming strategy. You need to make sure that AB1 files in
the same contig group share the same contig name and carefully select your REGEX_SuffixForward and
REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse reads
into the forward read list or vice versa, which will make the program generate wrong results. So, how should we
systematically name AB1 files? We suggest users to follow the file-naming regulation in Figure_3.

Fig. 32: Figure 3. Suggested AB1 file-naming regulation - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which helps sangeranalseR
to identify which reads should be grouped into the same contig automatically. The second part of the regulation is
an index; since there might be more than one read that is in the forward or reverse direction, we recommend you to
number your reads in the same contig group. The third part is a direction which is either ‘F’ (forward) or ‘R’ (reverse).
Last but not least, files have to end with .ab1 file extension.

To make it more specific, let’s go back to the true example. In Figure_2, there are two subdirectories, ACHLO and
RBNII, containing lots of AB1 files from different contigs in the root directory, Allolobophora_chlorotica
(ABIF_Directory).

First, we set REGEX_SuffixForward to "_[0-9]*_F.ab1$" and REGEX_SuffixReverse to
"_[0-9]*_R.ab1$" to let sangeranalyseR match and group forward and reverse reads automati-
cally. By the regular expression rule, Achl_ACHLO006-09_1_F.ab1, Achl_ACHLO007-09_1_F.
ab1, Achl_ACHLO040-09_1_F.ab1, Achl_ACHLO041-09_1_F.ab1, Achl_RBNII384-13_1_F.ab1,
Achl_RBNII395-13_1_F.ab1, Achl_RBNII396-13_1_F.ab1, and Achl_RBNII397-13_1_F.ab1
are categorized into forward reads, and Achl_ACHLO006-09_1_R.ab1, Achl_ACHLO007-09_1_R.
ab1, Achl_ACHLO040-09_1_R.ab1, Achl_ACHLO041-09_1_R.ab1, Achl_RBNII384-13_1_R.
ab1, Achl_RBNII395-13_1_R.ab1, Achl_RBNII396-13_1_R.ab1, and Achl_RBNII397-13_1_R.
ab1 are categorized into reverse reads. Then, str_split function is used to split each file-
name above into “contig name” and “direction-suffix”. Eight contig names are detected in this exam-
ple which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, Achl_ACHLO041-09,

7.6. Advanced User Guide - SangerAlignment (AB1) 49

sangeranalyseR

Achl_RBNII384-13, Achl_RBNII395-13, Achl_RBNII396-13, and Achl_RBNII397-13. Last, a loop
iterates through all contigs, and sangeranalseR creates each of them into a SangerContig instance. You can check
Advanced User Guide - SangerContig (AB1) to see how sangeranalyseR creates a SangerContig instance.

The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly
adopt the example regular expression matching values, "_[0-9]*_F.ab1$" and "_[0-9]*_R.ab1$", to group
reads and reduce chances of error. Everything mentioned above will be done automatically.

After understanding how parameters work, please refer to Creating SangerAlignment instance from AB1 below to see
how sangeranalseR creates SangerAlignment instance.

(2) “CSV file matching” SangerAlignment inputs (AB1)

For those who are not familiar with regular expression, we provide a second grouping approach, CSV file matching
method. sangeranalyseR will group AB1 files based on the information in a CSV file automatically. The note below
shows the regulations:

Note: Here is an example CSV file (Figure 4)

Fig. 33: Figure 4. Example CSV file for SangerAlignment instance creation.

• There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

• The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

• The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

50 Chapter 7. Documentation

sangeranalyseR

• The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the
same contig name, and they will be grouped into the same contig.

There are two parameters, ABIF_Directory and CSV_NamesConversion,that define the grouping rule to help
sangeranalseR to automatically match correct AB1 files and divide them into forward and reverse directions.

Note:

• ABIF_Directory: this is the directory that contains all AB1 files, and it can be either an absolute or relative
path. We suggest users to put only target AB1 files inside this directory and do not include any other unrelated
files.

• CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is
written. For “regular expression matching”, rules are writtein in filenames, and thus more naming requirements are
required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on AB1
file-naming.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns),
find the names of AB1 files listed in “reads”, group them based on “contig”, and assign directions to them based on
“direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file
(CSV_NamesConversion) and a file directory like Figure_2 (ABIF_Directory) with AB1 files from
different contigs. In the CSV file, there are 16 rows and 8 distinct contig names. sangeranalyseR
matches “reads” of these 16 rows to filenames in Allolobophora_chlorotica directory. Then
sangeranalyseR groups all matched reads, Achl_ACHLO006-09_1_F.ab1, Achl_ACHLO007-09_1_F.
ab1, Achl_ACHLO040-09_1_F.ab1, Achl_ACHLO041-09_1_F.ab1, Achl_RBNII384-13_1_F.
ab1, Achl_RBNII395-13_1_F.ab1, Achl_RBNII396-13_1_F.ab1, Achl_RBNII397-13_1_F.
ab1, Achl_ACHLO006-09_1_R.ab1, Achl_ACHLO007-09_1_R.ab1, Achl_ACHLO040-09_1_R.
ab1, Achl_ACHLO041-09_1_R.ab1, Achl_RBNII384-13_1_R.ab1, Achl_RBNII395-13_1_R.ab1,
Achl_RBNII396-13_1_R.ab1, and Achl_RBNII397-13_1_R.ab1, into 8 distinct contig names
which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, Achl_ACHLO041-09,
Achl_RBNII384-13, Achl_RBNII395-13, Achl_RBNII396-13, and Achl_RBNII397-13, by the “con-
tig” column. Last, the directions of reads in each contig are assigned by the “direction” column. Take
Achl_ACHLO041-09 contig as an example. Its “forward read list” will include Achl_ACHLO041-09_1_F.
ab1, and its “reverse read list” will include Achl_ACHLO041-09_1_R.ab1.

After understanding how parameters work, please refer to Creating SangerAlignment instance from AB1 below to see
how sangeranalseR creates SangerAlignment instance.

7.6.2 Creating SangerAlignment instance from AB1

After preparing the input directory, we can create a SangerAlignment instance by running SangerAlignment
constructor function or new method. The constructor function is a wrapper for new method and it makes instance
creation more intuitive. Their input parameters are same, and all of them have their default values. For more details
about SangerAlignment inputs and slots definition, please refer to sangeranalyseR reference manual. We will explain
two SangerAlignment instance creation methods, “regular expression matching” and “CSV file matching”.

7.6. Advanced User Guide - SangerAlignment (AB1) 51

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

(1) “regular expression matching” SangerAlignment creation (AB1)

The consturctor function and new method below contain three parameters, ABIF_Directory,
REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. It
also includes important parameters like quality trimming, chromatogram visualization, consensus alignment, contigs
alignment, and so on. Run the following code and create my_sangerAlignment instance.

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",

processMethod = "REGEX",
ABIF_Directory = parentDir,
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 2)

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",

inputSource = "ABIF",
processMethod = "REGEX",
ABIF_Directory = parentDir,
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,

(continues on next page)

52 Chapter 7. Documentation

sangeranalyseR

(continued from previous page)

readingFrame = 1,
processorsNum = 2)

In this example, 16 reads are detected and 8 distinct SangerContig instances are created. These SangerContig instances
are stored in a “contig list” in my_sangerAlignment, which will be used as the input for the following functions.

Inside the R shell, you can run my_sangerAlignment to get basic information of the instance or run
my_sangerAlignment@objectResults@readResultTable to check the creation result of every Sanger
read after my_sangerAlignment is successfully created.

Here is the output of my_sangerAlignment:

SangerAlignment S4 instance
Input Source : ABIF
Process Method : REGEX
ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/Allolobophora_chlorotica
REGEX Suffix Forward : _[0-9]*_F.ab1$
REGEX Suffix Reverse : _[0-9]*_R.ab1$

Contigs Consensus :
→˓TTATAYTTTATTYTRGGCGTCTGAAGCAGGATAGTAGGAGCYGGTATAAGACTCCTAATTCGAATTGAGCTAAGACARCCGGGAGCATTCCTAGGAAGRGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGACTTAACAACATAAGATTCTGACTCCTTCCCCCATCACTAATCCTTCTAGTGTCCTCTGCTGCAGTAGAAAAAGGTGCBGGAACTGGATGAACTGTTTATCCRCCCCTAGCAAGAAATATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATYTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTAGGKGCYATTAATTTTATYACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTHCTTCTACTCCTATCYTTACCAGTATTAGCCGGTGCRATTACYATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGAYCCTGCTGGAGGTGGAGATCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-13-07 23:16:16] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignment@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource
→˓direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
2 Achl_ACHLO006-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
3 Achl_ACHLO007-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
4 Achl_ACHLO007-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
5 Achl_ACHLO040-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
6 Achl_ACHLO040-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
7 Achl_ACHLO041-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
8 Achl_ACHLO041-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
9 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
10 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
11 Achl_RBNII395-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
12 Achl_RBNII395-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
13 Achl_RBNII396-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
14 Achl_RBNII396-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
15 Achl_RBNII397-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read

(continues on next page)

7.6. Advanced User Guide - SangerAlignment (AB1) 53

sangeranalyseR

(continued from previous page)

16 Achl_RBNII397-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read

(2) “CSV file matching” SangerAlignment creation (AB1)

The consturctor function and new method below contain two parameters, ABIF_Directory, and
CSV_NamesConversion, that we mentioned in the previous section. It also includes important parameters like
quality trimming, chromatogram visualization, consensus alignment, contigs alignment, and so on. Run the following
code and create my_sangerAlignment instance.

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerAlignment", "names_
→˓conversion_all.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",

processMethod = "CSV",
ABIF_Directory = parentDir,
CSV_NamesConversion = csv_namesConversion,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",

processMethod = "CSV",
ABIF_Directory = parentDir,
CSV_NamesConversion = csv_namesConversion,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

(continues on next page)

54 Chapter 7. Documentation

sangeranalyseR

(continued from previous page)

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please
check (2) “CSV file matching” SangerAlignment inputs (AB1). Then, it will follow rules in the CSV file and create
my_sangerAlignment. After it’s created, inside the R shell, you can run my_sangerAlignment to get basic
information of the instance or run my_sangerAlignment@objectResults@readResultTable to check
the creation result of every Sanger read after my_sangerAlignment is successfully created.

Here is the output of my_sangerAlignment:

SangerAlignment S4 instance
Input Source : ABIF
Process Method : CSV
ABIF Directory : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/Allolobophora_chlorotica
CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/

→˓library/sangeranalyseR/extdata/ab1/SangerAlignment/names_conversion_all.csv
Contigs Consensus :

→˓TTATAYTTTATTYTRGGCGTCTGAAGCAGGATAGTAGGAGCYGGTATAAGACTCCTAATTCGAATTGAGCTAAGACARCCGGGAGCATTCCTAGGAAGRGATCAACTCTATAACACTATTGTAACTGCTCACGCATTTGTAATAATTTTCTTTCTAGTAATACCTGTATTTATTGGGGGGTTCGGTAATTGACTTCTACCTTTAATACTTGGAGCCCCTGACATGGCATTCCCACGACTTAACAACATAAGATTCTGACTCCTTCCCCCATCACTAATCCTTCTAGTGTCCTCTGCTGCAGTAGAAAAAGGTGCBGGAACTGGATGAACTGTTTATCCRCCCCTAGCAAGAAATATTGCTCATGCCGGCCCATCTGTAGACTTAGCTATYTTTTCTCTTCATTTAGCAGGTGCTTCATCAATCTTAGGKGCYATTAATTTTATYACTACTGTTATTAACATACGATGAAGAGGCTTACGACTTGAACGAATCCCATTATTCGTTTGAGCCGTACTAATTACAGTGGTHCTTCTACTCCTATCYTTACCAGTATTAGCCGGTGCRATTACYATACTACTTACCGATCGAAATCTAAATACCTCCTTCTTTGAYCCTGCTGGAGGTGGAGATCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 01:48:28] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignment@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource
→˓direction
1 Achl_ACHLO006-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
2 Achl_ACHLO006-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
3 Achl_ACHLO007-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
4 Achl_ACHLO007-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
5 Achl_ACHLO040-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
6 Achl_ACHLO040-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
7 Achl_ACHLO041-09_1_F.ab1 TRUE None None ABIF Forward
→˓Read
8 Achl_ACHLO041-09_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
9 Achl_RBNII384-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
10 Achl_RBNII384-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
11 Achl_RBNII395-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
12 Achl_RBNII395-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
13 Achl_RBNII396-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read (continues on next page)

7.6. Advanced User Guide - SangerAlignment (AB1) 55

sangeranalyseR

(continued from previous page)

14 Achl_RBNII396-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read
15 Achl_RBNII397-13_1_F.ab1 TRUE None None ABIF Forward
→˓Read
16 Achl_RBNII397-13_2_R.ab1 TRUE None None ABIF Reverse
→˓Read

7.6.3 Updating SangerAlignment quality trimming parameters

In the previous Creating SangerAlignment instance from AB1 part, the constructor function will apply the quality trim-
ming parameters to all reads. After creating a SangerAlignment S4 instance, users can change the trimming parameters
by running updateQualityParam function which will update all reads with the new trimming parameters and redo
reads alignment in SangerContig and contigs alignment in SangerAlignment. If users want to do quality trimming read
by read instead all at once, please read Launching SangerAlignment Shiny app.

newSangerAlignment <- updateQualityParam(my_sangerAlignment,
TrimmingMethod = "M2",
M1TrimmingCutoff = NULL,
M2CutoffQualityScore = 29,
M2SlidingWindowSize = 15)

7.6.4 Launching SangerAlignment Shiny app

We create an interactive local Shiny app for users to go into each SangerRead and SangerContig in SangerAlignment
instance. Users only need to run one function with previously created instance as input, my_sangerAlignment,
and the SangerAlignment Shiny app will pop up. Here, we will go through pages in the three levels.

launchApp(my_sangerAlignment)

SangerAlignment page (SA app)

Figure 5 is the initial page and the toppest layer of SangerAlignment App. It provides basic parameters in Sanger-
Alignment instance, contigs alignment result and phylogenetic tree etc. Before checking the results, users need to
click “Re-calculate Contigs Alignment” button to do contigs alignment in order to get the updated results. From the
left-hand side panel, we can clearly see the hierarchy of the SangerAlignment S4 instance and easily access to all reads
and contigs in it.

Scroll down a bit, users can see the contigs alignment result generated by DECIPHER R package embedded in Sanger-
Alignment page. Figure 6 shows the contigs alignment result.

In SangerAlignment page, the phylogenetic tree result is provided as well (Figure 7). The tree is generated by ape R
package which uses neighbor-joining algorithm.

56 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/html/DECIPHER.html
https://cran.r-project.org/web/packages/ape/index.html

sangeranalyseR

Fig. 34: Figure 5. SangerAlignment Shiny app initial page - SangerAlignment Page.

Fig. 35: Figure 6. SangerAlignment Page - contigs alignment result.

7.6. Advanced User Guide - SangerAlignment (AB1) 57

sangeranalyseR

Fig. 36: Figure 7. SangerAlignment Page - phylogenetic tree result.

SangerContig page (SA app)

Now, let’s go to the page in the next level, SangerContig page. Users can click into all contigs and check their results.
Figure 8 shows the overview page of Contig 1. Notice that there is a red “Re-calculate Contig” button. After changing
the quality trimming parameters, users need to click the button before checking the results below in order to get the
updated information.

The information provided in this page includes : “input parameters”, “genetic code table”, “reference amino acid se-
quence”, “reads alignment”, “difference data frame”, “dendrogram”, “sample distance heatmap”, “indels data frame”,
“stop codons data frame”. Figure 9 and Figure 10 show part of the results in the SangerContig page. The results are
dynamic based on the trimming parameters from user inputs.

SangerRead page (SA app)

Now, let’s go to the page in the lowest level, SangerRead page. SangerRead page contains all details of a read in-
cluding its trimming and chromatogram inputs and results. All reads are in “forward” or “reverse” direction. Under
“Contig Overview” tab (SangerContig page), there are two expendable tabs, “Forward Reads” and “Reverse Reads”
storing corresponding reads on the left-hand side navigation panel in Figure 11. In this example, there are one read
in each tab and Figure 11 shows the “1 - 1 Forward Read” page. It provides basic information, quality trimming
inputs, chromatogram plotting inputs etc. Primary/secondary sequences in this figure are dynamic based on the
signalRatioCutoff value for base calling and the length of them are always same. Another thing to men-
tion is that primary/secondary sequences and the sequences in the chromatogram in Figure 16 below will always be
same after trimming and their color codings for A/T/C/G are same as well.

In quality trimming steps, we removes fragment at both ends of sequencing reads with low quality score. It is important
because trimmed reads will improves alignment results. Figure 12 shows the UI for Trimming Method 1 (M1):
‘Modified Mott Trimming’. This method is implemented in Phred. Users can change the cutoff score and click “Apply
Trimming Parameters” button to update the UI. The value of input must be between 0 and 1. If the input is invalid, the
cutoff score will be set to default 0.0001.

Figure 13 shows another quality trimming methods for users to choose from, Trimming Method 2 (M2): ‘Trimmomat-
ics Sliding Window Trimming’. This method is implemented in Trimmomatics. Users can change the cutoff quality
score as well as sliding window size and click “Apply Trimming Parameters” button to update the UI. The value of

58 Chapter 7. Documentation

http://www.phrap.org/phredphrapconsed.html
http://www.usadellab.org/cms/?page=trimmomatic

sangeranalyseR

Fig. 37: Figure 8. SangerAlignment Shiny app - SangerContig page.

Fig. 38: Figure 9. SangerContig page - contig-related parameters, genetic code and reference amino acid sequence.

7.6. Advanced User Guide - SangerAlignment (AB1) 59

sangeranalyseR

Fig. 39: Figure 10. SangerContig page - reads alignment and difference data frame.

Fig. 40: Figure 11. SangerAlignment Shiny app - SangerRead page.

60 Chapter 7. Documentation

sangeranalyseR

Fig. 41: Figure 12. SangerRead page - Trimming Method 1 (M1): ‘Modified Mott Trimming’ UI.

cutoff quality score must be between 0 and 60 (default 20); the value of sliding window size must be between 0 and
40 (default 10). If the inputs are invalid, their values will be set to default.

Fig. 42: Figure 13. SangerRead page - Trimming Method 2 (M2): ‘Trimmomatics Sliding Window Trimming’ UI.

Figure 14 shows the quality report before and after trimming. After clicking the “Apply Trimming Parameters” button,
the values of these information boxes will be updated to the latest values.

In Figure 15, the x-axis is the index of the base pairs; the y-axis is the Phred quality score. The green horizontal bar at
the top of the plot is the raw read region and the orange horizontal bar represents the trimmed read region. Both Figure
15 trimming plot and Figure 16 chromatogram will be updated once users change the quality trimming parameters and
click the “Apply Trimming Parameters” button in Figure 16.

If we only see primary and secondary sequences in the table, we will loose some variations. Chromatogram is very
helpful to check the peak resolution. Figure 16 shows the panel of plotting chromatogram. Users can change four
parameters: Base Number Per Row, Height Per Row, Signal Ratio Cutoff, and Show Trimmed
Region. Among them, Signal Ratio Cutoff is the key parameter. If its value is default value 0.33, it indicates
that the lower peak should be at least 1/3rd as high as the higher peak for it count as a secondary peak.

Here is an example of applying new chromatogram parameters. We click “Show Trimmed Region” to set its value
from FALSE to TRUE. Figure 17 shows the loading notification popup during base calling and chromatogram plotting.

After replotting the chromatogram, trimmed region is showed in red striped region. Figure 18 shows part of the the
chromatogram (1 bp ~ 240 bp). Moreover, chromatogram will be replotted when trimmed positions or chromatogram

7.6. Advanced User Guide - SangerAlignment (AB1) 61

sangeranalyseR

Fig. 43: Figure 14. SangerRead page - read quality report before / after trimming.

Fig. 44: Figure 15. SangerRead page - quality trimming plot.

62 Chapter 7. Documentation

sangeranalyseR

Fig. 45: Figure 16. SangerRead page - chromatogram panel.

Fig. 46: Figure 17. SangerRead page - loading notification popup during replotting chromatogram.

7.6. Advanced User Guide - SangerAlignment (AB1) 63

sangeranalyseR

parameters are updated.

Fig. 47: Figure 18. SangerRead page - chromatogram with trimmed region showed.

To let users browse the trimmed primary/secondary sequences without finding “Trimming Start Point” and “Trimming
End Point” by themselves, we provide the final trimmed primary/secondary sequences that will be used for reads
alignment in table format with quality scores in Figure 19. Frameshift amino acid sequences are also provided.

We have updated the trimming and chromatogram parameters for each read. Now, we need to click “Re-calculate
contig” button to do alignment again. Last but not least, we can save all data into a new ‘SangerContig’ S4 instance by
clicking “Save S4 instance button”. New S4 instance will be saved in Rda format. Users can run readRDS function
to load it into current R environment. Figure 20 shows some hints in the save notification popup.

7.6.5 Writing SangerAlignment FASTA files (AB1)

Users can write the SangerAlignment instance, my_sangerAlignment, to FASTA files. There are four options for
users to choose from in selection parameter.

• contigs_unalignment: Writing contigs into a single FASTA file.

• contigs_alignment: Writing contigs alignment and contigs consensus read to a single FASTA file.

• all_reads: Writing all reads to a single FASTA file.

• all: Writing contigs, contigs alignment, and all reads into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function
in Biostrings R package. Users can set the compression level through writeFasta function.

64 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/html/Biostrings.html

sangeranalyseR

Fig. 48: Figure 19. SangerRead page - trimmed primary/secondary sequences and Phred quality score in table format.

Fig. 49: Figure 20. SangerRead page - saving notification popup.

7.6. Advanced User Guide - SangerAlignment (AB1) 65

sangeranalyseR

writeFasta(my_sangerAlignment,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA,
selection = "all")

Users can download the output FASTA file of this example through the following three links:

(1) Sanger_contigs_unalignment.fa

(2) Sanger_contigs_alignment.fa

(3) Sanger_all_trimmed_reads.fa

7.6.6 Generating SangerAlignment report (AB1)

Last but not least, users can save SangerAlignment instance, my_sangerAlignment, into a report after the analysis.
The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerContig and includeSangerRead parameters to decide to which level the
SangerAlignment report will go. Moreover, after the reports are generated, users can easily navigate through reports
in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out
all reports. If users only want to generate the contig result, remember to set includeSangerRead and
includeSangerContig to FALSE in order to save time.

generateReport(my_sangerAlignment,
outputDir = tempdir(),
includeSangerRead = FALSE,
includeSangerContig = FALSE)

Here is the generated SangerAlignment html report of this example (ABIF). Users can access to ‘Basic Information’,
‘Contigs Consensus’, ‘Contigs Alignment’, ‘Contigs Tree’, and ‘Contig Reports’ sections inside it. Furthermore, users
can also navigate through html reports of all contigs and forward and reverse SangerRead in this SangerAlignment
report.

7.6.7 Code summary (SangerAlignment, AB1)

(1) Preparing SangerAlignment AB1 inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
parentDir <- file.path(rawDataDir, 'Allolobophora_chlorotica')

66 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/AB1/SangerAlignment/SangerAlignment_Report.html

sangeranalyseR

(2) Creating SangerAlignment instance from AB1

(2.1) “Regular Expression Method” SangerAlignment creation (AB1)

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",

processMethod = "REGEX",
ABIF_Directory = parentDir,
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",

inputSource = "ABIF",
processMethod = "REGEX",
ABIF_Directory = parentDir,
REGEX_SuffixForward = "_[0-9]*_F.ab1$",
REGEX_SuffixReverse = "_[0-9]*_R.ab1$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerAlignment creation (AB1)

csv_namesConversion <- file.path(rawDataDir, "ab1", "SangerAlignment", "names_
→˓conversion_all.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignment <- SangerAlignment(inputSource = "ABIF",

processMethod = "CSV",
ABIF_Directory = parentDir,
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

using `new` method to create SangerAlignment instance
my_sangerAlignment <- new("SangerAlignment",

processMethod = "CSV",
ABIF_Directory = parentDir,
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

7.6. Advanced User Guide - SangerAlignment (AB1) 67

sangeranalyseR

Following is the R shell output that you will get.

(3) Updating SangerAlignment quality trimming parameters (AB1)

newSangerAlignment <- updateQualityParam(my_sangerAlignment,
TrimmingMethod = "M2",
M1TrimmingCutoff = NULL,
M2CutoffQualityScore = 29,
M2SlidingWindowSize = 15)

(4) Launching SangerAlignment Shiny app (AB1)

launchApp(my_sangerAlignment)

(5) Writing SangerAlignment FASTA files (AB1)

writeFasta(my_sangerAlignment)

Following is the R shell output that you will get.

You will get three FASTA files:

(1) Sanger_contigs_unalignment.fa

(2) Sanger_contigs_alignment.fa

(3) Sanger_all_trimmed_reads.fa

(6) Generating SangerAlignment report (AB1)

generateReport(my_sangerAlignment)

68 Chapter 7. Documentation

sangeranalyseR

You can check the html report of this SangerAlignment example (ABIF).

7.7 Advanced User Guide - SangerRead (FASTA)

SangerRead is in the bottommost level of sangeranalyseR (Figure_1), and each SangerRead object corresponds to a
single read in Sanger sequencing. In this section, we are going to go through detailed sangeranalyseR data analysis
steps in SangerRead level with FASTA file input.

Fig. 50: Figure 1. Hierarchy of classes in sangeranalyseR, SangerRead level.

7.7.1 Preparing SangerRead FASTA input

The FASTA input method is designed for those who do not want to do quality trimming and base calling on their Sanger
sequencing data; therefore, no quality trimming and chromatogram input parameters are needed. Before starting the
analysis, users need to prepare a FASTA file, and in this example, it is in the sangeranalyseR package; thus, you can
simply get its path by running the following codes:

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFNfa <- file.path(inputFilesPath,

"fasta",
"SangerRead",
"Achl_ACHLO006-09_1_F.fa")

The only hard regulation of the filename, Achl_ACHLO006-09_1_F.fa in this example, is that file extension must
be .fasta or .fa.

7.7.2 Creating SangerRead instance from FASTA

After preparing an input FASTA file, the next step is to create a SangerRead instance by running SangerRead
constructor function or new method. The constructor function is a wrapper for new method which makes instance
creation more intuitive. All of the input parameters have their default values. We list important parameters in the two
SangerRead creation methods below. readFileName stores the FASTA filename, and inside it, the string in the first
line after “>” is the name of the read. Users need to assign the name of the read to fastaReadName which is used
for read-matching. Figure 2 is a valid FASTA file, Achl_ACHLO006-09_1_F.fa (example FASTA file),
and the value of fastaReadName is Achl_ACHLO006-09_1_F.

7.7. Advanced User Guide - SangerRead (FASTA) 69

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/AB1/SangerAlignment/SangerAlignment_Report.html

sangeranalyseR

Fig. 51: Figure 2. SangerRead FASTA input file.

using `constructor` function to create SangerRead instance
sangerReadFfa <- SangerRead(inputSource = "FASTA",

readFeature = "Forward Read",
readFileName = A_chloroticaFFNfa,
fastaReadName = "Achl_ACHLO006-09_1_F",
geneticCode = GENETIC_CODE)

using `new` method to create SangerRead instance
sangerReadFfa <- new("SangerRead",

inputSource = "FASTA",
readFeature = "Forward Read",
readFileName = A_chloroticaFFNfa,
fastaReadName = "Achl_ACHLO006-09_1_F",
geneticCode = GENETIC_CODE)

The inputs of SangerRead constructor function and new method are the same. For more details about SangerRead
inputs and slots definition, please refer to sangeranalyseR reference manual.

Inside the R shell, you can run sangerReadFfa to get basic information of the instance or run
sangerReadFfa@objectResults@readResultTable to check the creation result of every Sanger read after
sangerReadFfa is successfully created.

Here is the output of sangerReadFfa:

SangerRead S4 instance
Input Source : FASTA
Read Feature : Forward Read
Read FileName : Achl_ACHLO006-09_1_F.fa

Fasta Read Name : Achl_ACHLO006-09_1_F
Primary Sequence :

→˓CTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGG
SUCCESS [2021-12-07 23:37:43] 'Achl_ACHLO006-09_1_F.fa' is successfully created!

Here is the output of sangerReadFfa@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read

70 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

7.7.3 Writing SangerRead FASTA files (FASTA)

Users can write sangerReadFfa to a FASTA file. Because the FASTA input method does not support quality
trimming or base calling, in this example, the sequence of the output FASTA file will be the same as the input FASTA
file. Moreover, users can set the compression level through the one-liner, writeFasta, which mainly depends on
writeXStringSet function in Biostrings R package.

writeFasta(sangerReadFfa,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA)

Users can download the Achl_ACHLO006-09_1_F.fa of this example.

7.7.4 Generating SangerRead report (FASTA)

Last but not least, users can save sangerReadFfa into a static HTML report by knitting Rmd files. In this example,
tempdir function will generate a random path.

generateReport(sangerReadFfa,
outputDir = tempdir())

SangerRead_Report_fasta.html is the generated SangerRead report html of this example. Users can access to ‘Basic
Information’, ‘DNA Sequence’ and ‘Amino Acids Sequence’ sections inside this report.

7.7.5 Code summary (SangerRead, fasta)

(1) Preparing SangerRead FASTA input

inputFilesPath <- system.file("extdata/", package = "sangeranalyseR")
A_chloroticaFFNfa <- file.path(inputFilesPath,

"fasta",
"SangerRead",
"Achl_ACHLO006-09_1_F.fa")

(2) Creating SangerRead instance from FASTA

7.7. Advanced User Guide - SangerRead (FASTA) 71

https://bioconductor.org/packages/release/bioc/html/Biostrings.html
https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/FASTA/Achl_ACHLO006-09_1_F/SangerRead_Report_fasta.html

sangeranalyseR

using `constructor` function to create SangerRead instance
sangerReadFfa <- SangerRead(inputSource = "FASTA",

readFeature = "Forward Read",
readFileName = A_chloroticaFFNfa,
fastaReadName = "Achl_ACHLO006-09_1_F")

using `new` method to create SangerRead instance
sangerReadFfa <- new("SangerRead",

inputSource = "FASTA",
readFeature = "Forward Read",
readFileName = A_chloroticaFFNfa,
fastaReadName = "Achl_ACHLO006-09_1_F")

Following is the R shell output that you will get.

(3) Writing SangerRead FASTA files (FASTA)

writeFasta(sangerReadFfa)

Following is the R shell output that you will get.

And you will get one FASTA file:

(1) Achl_ACHLO006-09_1_F.fa

(4) Generating SangerRead report (FASTA)

generateReport(sangerReadFfa)

You can check the html report of this SangerRead example (FASTA).

7.8 Advanced User Guide - SangerContig (FASTA)

SangerContig is in the intermediate level of sangeranalyseR (Figure_1), and each SangerContig instance corresponds
to a contig in a Sanger sequencing experiment. Among its slots, there are two lists, forward and reverse read list,
storing SangerRead in the corresponding direction.

72 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerRead/FASTA/Achl_ACHLO006-09_1_F/SangerRead_Report_fasta.html

sangeranalyseR

In this section, we are going to go through details about a reproducible SangerContig analysis example with the FASTA
file input in sangeranalyseR. By running the following example codes, you will get an end-to-end SangerContig
analysis result.

Fig. 52: Figure 1. Hierarchy of classes in sangeranalyseR, SangerContig level.

7.8.1 Preparing SangerContig FASTA input

In Advanced User Guide - SangerContig (AB1), we demonstrated how to use AB1 input files to create SangerContig
instance. Here, we explain another input format - the FASTA input. Before starting the analysis, users need to prepare
one FASTA file, which must end with .fa or .fasta, containing sequences of all reads. In this example, the FASTA file
is in the sangeranalyseR package, and you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerContig", "Achl_ACHLO006-09.fa")

The value of fastaFN is where the FASTA file is placed. If your operating system is macOS, then its value should
look like this:

And we showed the reads in fastaFN in Figure_2 (example FASTA file):

Fig. 53: Figure 2. SangerContig FASTA input file.

Inside the FASTA file (Figure_2; Achl_ACHLO006-09.fa), the strings starting with “>” before each read are
the read names. There are two ways of grouping reads which are “regular expression matching” and “CSV file
matching”, and following are instructions of how to prepare your FASTA input file.

7.8. Advanced User Guide - SangerContig (FASTA) 73

sangeranalyseR

(1) “regular expression matching” SangerContig inputs (FASTA)

For regular expression matching method, sangeranalyseR will group reads based on their contig name and read direc-
tion in their names automatically; therefore, users have to follow the read-naming regulations below:

Note:

• All reads in the same contig group must include the same contig name in their read names.

• Forward or reverse direction also has to be specified in their read names.

There are four parameters, FASTA_File, contigName, REGEX_SuffixForward and
REGEX_SuffixReverse, that define the grouping rule to let sangeranalyseR automatically match correct
reads in FASTA file and divide them into forward and reverse directions.

Note:

• FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an
absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include
any other unrelated reads.

• contigName: this is a regular expression that matches read names that are going to be included in the Sanger-
Contig analysis. grepl function in R is used.

• REGEX_SuffixForward: this is a regular expression that matches all read names in forward direction.
grepl function in R is used.

• REGEX_SuffixReverse: this is a regular expression that matches all read names in reverse direction.
grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is
a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the contigName to exclude unrelated files and then separate
the forward and reverse reads by matching REGEX_SuffixForward and REGEX_SuffixReverse. Therefore,
it is important to make sure that all target reads in the FASTA file share the same contigName and carefully select
your REGEX_SuffixForward and REGEX_SuffixReverse. The bad file-naming and wrong regex matching
might accidentally include reverse reads into the forward read list or vice versa, which will make the program generate
wrong results. Therefore, it is important to have a consistent naming strategy. So, how should we systematically name
the reads? We suggest users to follow the file-naming regulation in Figure_3.

Fig. 54: Figure 3. Suggested read naming regulation in FASTA file - SangerContig.

As you can see, the first part of the regulation is a consensus read name (or contig name), which narrows down the
scope of reads to those we are going to examine. The second part of the regulation is an index. Since there might be
more than one read that is in the forward or reverse direction, we recommend you to number your reads in the same
contig group. The last part is a direction which is either ‘F’ (forward) or ‘R’ (reverse).

To make it more specific, let’s go back to the true example. In Figure_2, there are two reads in the
FASTA file (fasta_FN). First, we set contigName to "Achl_ACHLO006-09" to confirm that two of them,
Achl_ACHLO006-09_1_F and Achl_ACHLO006-09_2_R, contain our target contigName and should be
included. Then, we set REGEX_SuffixForward to "_[0-9]*_F$" and REGEX_SuffixReverse to
"_[0-9]*_R$" to let sangeranalyseR match and group forward and reverse reads automatically. By the regular ex-
pression rule, Achl_ACHLO006-09_1_F and Achl_ACHLO006-09_2_R will be categorized into “forward read

74 Chapter 7. Documentation

sangeranalyseR

list” and “reverse read list” respectively. The reason why we strongly recommend you to follow this file-naming reg-
ulation is that by doing so, you can directly adopt the example regular expression matching values, "_[0-9]*_F$"
and "_[0-9]*_R$", to group reads and reduce chances of error.

After understanding how parameters work, please refer to Creating SangerContig instance from FASTA below to see
how sangeranalseR creates ‘Achl_ACHLO006-09’ SangerContig instance.

(2) “CSV file matching” SangerContig inputs (FASTA)

No doubt that read names in the original FASTA file do not follow the naming regulation, and you do not want to
change the original FASTA file; thus, we provide a second grouping approach, CSV file matching method. sanger-
analyseR will group reads in the FASTA file based on the information in a CSV file automatically, and users do not
need to alter the read names in the FASTA file; therefore, users have to follow the regulations below:

Note: Here is an example CSV file (Figure_4)

Fig. 55: Figure 4. Example CSV file for SangerContig instance creation.

• There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

• The “reads” column stores the read names in the FASTA file that are going to be included in the analysis.

• The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

• The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the
same contig name, and they will be grouped into the same SangerContig instance.

There are three parameters, FASTA_File, contigName, and CSV_NamesConversion,that define the grouping
rule to help sangeranalseR to automatically match correct reads in a FASTA file and divide them into forward and
reverse directions.

Note:

• FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an
absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include
any other unrelated reads.

• contigName: this is a regular expression that matches read names that are going to be included in the Sanger-
Contig analysis. grepl function in R is used.

• CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is
written. For “regular expression matching”, rules are writtein in read names, and thus more naming requirements
are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on
naming reads.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns),
filter out rows whose “contig” is not the value of contigName parameter, find the read names in the FASTA file
listed in “reads”, and assign directions to them based on “direction”.

7.8. Advanced User Guide - SangerContig (FASTA) 75

sangeranalyseR

To make it more specific, let’s go back to the true example. First, we prepare a CSV file
(CSV_NamesConversion) and a FASTA file (FASTA_File). In the CSV file, both rows have the
contig name "Achl_ACHLO006-09", which is what we need to assign to the contigName parame-
ter. sangeranalyseR then checks and matches “reads” of these two rows, "Achl_ACHLO006-09_1_F" and
"Achl_ACHLO006-09_2_R". Last, these two reads are assigned into “forward read list” and “reverse read list”
respectively by the “direction” column.

After understanding how parameters work, please refer to Creating SangerContig instance from FASTA below to see
how sangeranalseR creates ‘Achl_ACHLO006-09’ SangerContig instance.

7.8.2 Creating SangerContig instance from FASTA

After preparing the input directory, we can create a SangerContig instance by running SangerContig constructor
function or new method. The constructor function is a wrapper for new method and it makes instance creation
more intuitive. Their input parameters are same, and all of them have their default values. For more details about
SangerContig inputs and slots definition, please refer to sangeranalyseR reference manual. We will explain two
SangerContig instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerContig creation (FASTA)

The consturctor function and new method below contain four parameters, FASTA_File, contigName,
REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. In con-
trast to AB1 input method, it does not include quality trimming and chromatogram visualization parameters. Run the
following code and create my_sangerContigFa instance.

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",

processMethod = "REGEX",
FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",

inputSource = "FASTA",
processMethod = "REGEX",
FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
REGEX_SuffixForward = "_[0-9]*_F$",

(continues on next page)

76 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

(continued from previous page)

REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

In this example, contigName is set to Achl_ACHLO006-09, so Achl_ACHLO006-09_1_F and
Achl_ACHLO006-09_2_R are matched and selected. Moreover, by regular expression pattern matching,
Achl_ACHLO006-09_1_F is categorized into the forward list, and Achl_ACHLO006-09_2_R is categorized
into the reverse read. Both reads are aligned into a contig, my_sangerContigFa, and it will be used as the input
for the following functions.

Inside the R shell, you can run my_sangerContigFa to get basic information of the instance or run
my_sangerContigFa@objectResults@readResultTable to check the creation result of every Sanger
read after my_sangerContigFa is successfully created.

Here is the output of my_sangerContigFa:

SangerContig S4 instance
Input Source : FASTA
Process Method : REGEX

Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerContig/Achl_ACHLO006-09.fa

REGEX Suffix Forward : _[0-9]*_F$
REGEX Suffix Reverse : _[0-9]*_R$

Contig Name : Achl_ACHLO006-09
'minReadsNum' : 2

'minReadLength' : 20
'minFractionCall' : 0.5
'maxFractionLost' : 0.5

'acceptStopCodons' : TRUE
'readingFrame' : 1

Contig Sequence :
→˓TTATATTTTATTCTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGGATTACGTCTTGAACGAATTCCCCTGTTTGTCTGAGCTGTGCTAATTACAGTTGTTCTTCTACTTCTATCTTTACCAGTGCTAGCAGGTGCCATTACCATACTTCTTACCGACCGAAACCTCAATACTTCATTCTTTGATCCTGCCGGTGGTGGAGACCCCATCCTC
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-13-07 11:52:40] 'Achl_ACHLO006-09' is successfully created!

Here is the output of my_sangerContigFa@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read

(2) “CSV file matching” SangerContig creation (FASTA)

The consturctor function and new method below contain three parameters, FASTA_File, contigName, and
CSV_NamesConversion, that we mentioned in the previous section. Run the following code and create
my_sangerContigFa instance.

7.8. Advanced User Guide - SangerContig (FASTA) 77

sangeranalyseR

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerContig", "names_
→˓conversion_1.csv")

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",

processMethod = "CSV",
FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",

inputSource = "FASTA",
processMethod = "CSV",
FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please
check (2) “CSV file matching” SangerContig inputs (FASTA). Then, it will follow rules in the CSV file and create
my_sangerContigFa. After it’s created, inside the R shell, you can run my_sangerContigFa to get basic
information of the instance or run my_sangerContigFa@objectResults@readResultTable to check the
creation result of every Sanger read after my_sangerContigFa is successfully created.

Here is the output of my_sangerContigFa:

SangerContig S4 instance
Input Source : FASTA
Process Method : CSV

Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerContig/Achl_ACHLO006-09.fa

CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerContig/names_conversion_1.csv

Contig Name : Achl_ACHLO006-09
'minReadsNum' : 2

(continues on next page)

78 Chapter 7. Documentation

sangeranalyseR

(continued from previous page)

'minReadLength' : 20
'minFractionCall' : 0.5
'maxFractionLost' : 0.5

'acceptStopCodons' : TRUE
'readingFrame' : 1

Contig Sequence :
→˓TTATATTTTATTCTGGGCGTCTGAGCAGGAATGGTTGGAGCCGGTATAAGACTTCTAATTCGAATCGAGCTAAGACAACCAGGAGCGTTCCTGGGCAGAGACCAACTATACAATACTATCGTTACTGCACACGCATTTGTAATAATCTTCTTTCTAGTAATGCCTGTATTCATCGGGGGATTCGGAAACTGGCTTTTACCTTTAATACTTGGAGCCCCCGATATAGCATTCCCTCGACTCAACAACATGAGATTCTGACTACTTCCCCCATCACTGATCCTTTTAGTGTCCTCTGCGGCGGTAGAAAAAGGCGCTGGTACGGGGTGAACTGTTTATCCGCCTCTAGCAAGAAATCTTGCCCACGCAGGCCCGTCTGTAGATTTAGCCATCTTTTCCCTTCATTTAGCGGGTGCGTCTTCTATTCTAGGGGCTATTAATTTTATCACCACAGTTATTAATATGCGTTGAAGAGGATTACGTCTTGAACGAATTCCCCTGTTTGTCTGAGCTGTGCTAATTACAGTTGTTCTTCTACTTCTATCTTTACCAGTGCTAGCAGGTGCCATTACCATACTTCTTACCGACCGAAACCTCAATACTTCATTCTTTGATCCTGCCGGTGGTGGAGACCCCATCCTC
Forward reads in the contig >> 1
Reverse reads in the contig >> 1
SUCCESS [2021-13-07 12:01:57] 'Achl_ACHLO006-09' is successfully created!

Here is the output of my_sangerContigFa@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read

7.8.3 Writing SangerContig FASTA files (FASTA)

Users can write the SangerContig instance, my_sangerContigFa, to FASTA files. There are four options for users
to choose from in selection parameter.

• reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

• reads_alignment: Writing reads alignment and contig read to a single FASTA file.

• contig: Writing the contig to a single FASTA file.

• all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function
in Biostrings R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerContigFa,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA,
selection = "all")

Users can download the output FASTA file of this example through the following three links:

(1) Achl_ACHLO006-09_reads_unalignment.fa

(2) Achl_ACHLO006-09_reads_alignment.fa

(3) Achl_ACHLO006-09_contig.fa

7.8. Advanced User Guide - SangerContig (FASTA) 79

https://bioconductor.org/packages/release/bioc/html/Biostrings.html

sangeranalyseR

7.8.4 Generating SangerContig report (FASTA)

Last but not least, users can save SangerContig instance, my_sangerContigFa, into a report after the analysis.
The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerRead parameter to decide to which level the SangerContig report will go. Moreover,
after the reports are generated, users can easily navigate through reports in different levels within the HTML file.

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out all reports.
If users only want to generate the contig result, remember to set includeSangerRead to FALSE in order to save
time.

generateReport(my_sangerContigFa,
outputDir = tempdir(),
includeSangerRead = TRUE)

Here is the generated SangerContig html report of this example (FASTA). Users can access to ‘Basic Information’,
‘SangerContig Input Parameters’, ‘Contig Sequence’ and ‘Contig Results’ sections inside it. Furthermore, users can
also navigate through html reports of all forward and reverse SangerRead in this SangerContig report.

7.8.5 Code summary (SangerContig, FASTA)

1. Preparing SangerContig FASTA input

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerContig", "Achl_ACHLO006-09.fa")

2. Creating SangerContig instance from FASTA

using `constructor` function to create SangerRead instance
my_sangerContigFa <- SangerContig(inputSource = "FASTA",

processMethod = "REGEX",
FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

using `new` method to create SangerRead instance
my_sangerContigFa <- new("SangerContig",

inputSource = "FASTA",
processMethod = "REGEX",

(continues on next page)

80 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/FASTA/Achl_ACHLO006-09/SangerContig_Report.html

sangeranalyseR

(continued from previous page)

FASTA_File = fastaFN,
contigName = "Achl_ACHLO006-09",
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

Following is the R shell output that you will get.

3. Writing SangerContig FASTA files (FASTA)

writeFasta(my_sangerContigFa)

Following is the R shell output that you will get.

And you will get three FASTA files:

(1) Achl_ACHLO006-09_reads_unalignment.fa

(2) Achl_ACHLO006-09_reads_alignment.fa

(3) Achl_ACHLO006-09_contig.fa

4. Generating SangerContig report (FASTA)

generateReport(my_sangerContigFa)

You can check the html report of this SangerContig example (FASTA).

7.9 Advanced User Guide - SangerAlignment (FASTA)

SangerAlignment is in the toppest level of sangeranalyseR (Figure_1), and each SangerAlignment instance corre-
sponds to an alignment of contigs in a Sanger sequencing experiment. Among its slots, there is a SangerContig list

7.9. Advanced User Guide - SangerAlignment (FASTA) 81

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerContig/FASTA/Achl_ACHLO006-09/SangerContig_Report.html

sangeranalyseR

which will be aligned into a consensus contig. Users can access to each SangerContig and SangerRead inside a
SangerAlignment instance.

In this section, we are going to go through details about a reproducible SangerAlignment analysis example with the
FASTA file input in sangeranalyseR. By running the following example codes, you will get an end-to-end Sanger-
Alignment analysis result.

Fig. 56: Figure 1. Classes hierarchy in sangeranalyseR, SangerAlignment level.

7.9.1 Preparing SangerAlignment FASTA input

In Advanced User Guide - SangerAlignment (AB1), we demonstrated how to use AB1 input files to create Sanger-
Alignment instance. Here, we explain another input format - the FASTA input. Before starting the analysis, users need
to prepare one FASTA file, which must end with .fa or .fasta, containing sequences of all reads. In this example, the
FASTA file is in the sangeranalyseR package, and you can simply get its path by running the following codes:

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerAlignment", "Sanger_all_reads.fa")

The value of fastaFN is where the FASTA file is placed. If your operating system is macOS, then its value should
look like this:

And we showed the reads in fastaFN in Figure_2 (example FASTA file):

Inside the FASTA file (Figure_2; Sanger_all_reads.fa), the strings starting with “>” before each read are
the read names. There are two ways of grouping reads which are “regular expression matching” and “CSV file
matching”, and following are instructions of how to prepare your FASTA input file.

(1) “regular expression matching” SangerAlignment inputs (FASTA)

For regular expression matching method, sangeranalyseR will group reads based on their contig name and read direc-
tion in their read names automatically; therefore, users have to follow the read-naming regulations below:

Note:

• All reads in the same contig group must include the same contig name in their read names.

• Forward or reverse direction also has to be specified in their read names.

There are three parameters, FASTA_File, REGEX_SuffixForward and REGEX_SuffixReverse, that define
the grouping rule to let sangeranalyseR automatically match correct reads in FASTA file and divide them into forward
and reverse directions.

Note:

82 Chapter 7. Documentation

sangeranalyseR

Fig. 57: Figure 2. SangerAlignment FASTA input file (4 out of 8 reads are showed).

7.9. Advanced User Guide - SangerAlignment (FASTA) 83

sangeranalyseR

• FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an
absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include
any other unrelated reads.

• REGEX_SuffixForward: this is a regular expression that matches all read names in forward direction.
grepl function in R is used.

• REGEX_SuffixReverse: this is a regular expression that matches all read names in reverse direction.
grepl function in R is used.

If you don’t know what regular expression is, don’t panic - it’s just a way of recognising text. Please refer to What is
a regular expression? for more details. Here is an example of how it works in sangeranalseR:

So how sangeranalyseR works is that it first matches the forward and reverse reads by matching
REGEX_SuffixForward and REGEX_SuffixReverse. Then, sangeranalyseR uses the str_split func-
tion to split and vectorize their read names into “contig name” and “direction-suffix” two parts. For those having the
same “contig name” will be grouped into the same contig.

Therefore, it is important to have a consistent naming strategy. You need to make sure that reads in the FASTA file
that are in the same contig group share the same contig name and carefully select your REGEX_SuffixForward
and REGEX_SuffixReverse. The bad file-naming and wrong regex matching might accidentally include reverse
reads into the forward read list or vice versa, which will make the program generate wrong results. So, how should we
systematically name the reads? We suggest users to follow the file-naming regulation in Figure_3.

Fig. 58: Figure 3. Suggested read naming regulation in FASTA file - SangerAlignment.

As you can see, the first part of the regulation is a consensus read name (or contig name), which helps sangeranalseR
to identify which reads should be grouped into the same contig automatically. The second part of the regulation is
an index; since there might be more than one read that is in the forward or reverse direction, we recommend you to
number your reads in the same contig group. The Last part is a direction which is either ‘F’ (forward) or ‘R’ (reverse).

To make it more specific, let’s go back to the true example. In Figure_2, there are eight reads in
the FASTA file (fasta_FN; Sanger_all_reads.fa). First, we set REGEX_SuffixForward to
"_[0-9]*_F$" and REGEX_SuffixReverse to "_[0-9]*_R$" to let sangeranalyseR match and group
forward and reverse reads automatically. By the regular expression rule, Achl_ACHLO006-09_1_F,
Achl_ACHLO007-09_1_F, Achl_ACHLO040-09_1_F, and Achl_ACHLO041-09_1_F, are categorized into
forward reads, and Achl_ACHLO006-09_1_R, Achl_ACHLO007-09_1_R, Achl_ACHLO040-09_1_R, and
Achl_ACHLO041-09_1_R are categorized into reverse reads. Then, str_split function is used to split each
filename above into “contig name” and “direction-suffix”. Four contig names are detected in this example which are
Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, and Achl_ACHLO041-09. Last, a loop
iterates through all contig names, and sangeranalseR creates each of them into a SangerContig instance. You can
check Advanced User Guide - SangerContig (FASTA) to see how sangeranalyseR creates a SangerContig instance.

The reason why we strongly recommend you to follow this file-naming regulation is that by doing so, you can directly
adopt the example regular expression matching values, "_[0-9]*_F$" and "_[0-9]*_R$", to group reads and
reduce chances of error. Everything mentioned above will be done automatically.

After understanding how parameters work, please refer to Creating SangerAlignment instance from FASTA below to
see how sangeranalseR creates SangerAlignment instance.

(2) “CSV file matching” SangerAlignment inputs (FASTA)

No doubt that read names in the original FASTA file do not follow the naming regulation, and you do not want to
change the original FASTA file; thus, we provide a second grouping approach, CSV file matching method. sanger-

84 Chapter 7. Documentation

sangeranalyseR

analyseR will group reads in the FASTA file based on the information in a CSV file automatically, and users do not
need to alter the read names in the FASTA file. The note below shows the regulations:

Note: Here is an example CSV file (Figure 4)

Fig. 59: Figure 4. Example CSV file for SangerAlignment instance creation.

• There must be three columns, “reads”, “direction”, and “contig”, in the CSV file.

• The “reads” column stores the filename of AB1 files that are going to be included in the analysis.

• The “direction” column stores the direction of the reads. It must be “F” (forward) or “R” (reverse).

• The “contig” column stores the contig name that each read blongs. Reads in the same contig have to have the
same contig name, and they will be grouped into the same contig.

There are two parameters, FASTA_File and CSV_NamesConversion,that define the grouping rule to help
sangeranalseR to automatically match correct reads in the FASTA file and divide them into forward and reverse
directions.

Note:

• FASTA_File: this is the path to FASTA file that contains all sequences of reads, and it can be either an
absolute or relative path. We suggest users to include only target reads inside this FASTA file and do not include
any other unrelated reads.

• CSV_NamesConversion: this is the path to the CSV file. It can be either an absolute or relative path.

The main difference between “CSV file matching” and “regular expression matching” is where the grouping rule is
written. For “regular expression matching”, rules are writtein in read names, and thus more naming requirements
are required. In contrast, rules of “CSV file matching” are written in an additional CSV file so it is more flexible on
naming reads.

So how sangeranalyseR works is that it first reads in the CSV file (with “reads”, “direction”, and “contig” columns),
find the read names in the FASTA file that are listed in “reads”, and assign directions to them based on “direction”.

To make it more specific, let’s go back to the true example. First, we prepare a CSV file
(CSV_NamesConversion) and a fasta file (FASTA_File). In the CSV file, there are 8 rows and

7.9. Advanced User Guide - SangerAlignment (FASTA) 85

sangeranalyseR

4 distinct contig names. sangeranalyseR matches “reads” of these 8 rows to read names in the FASTA file.
Then sangeranalyseR groups all matched reads, Achl_ACHLO006-09_1_F, Achl_ACHLO007-09_1_F,
Achl_ACHLO040-09_1_F, Achl_ACHLO041-09_1_F, Achl_ACHLO006-09_1_R,
Achl_ACHLO007-09_1_R, Achl_ACHLO040-09_1_R, and Achl_ACHLO041-09_1_R, into 4 dis-
tinct contigs which are Achl_ACHLO006-09, Achl_ACHLO007-09, Achl_ACHLO040-09, and
Achl_ACHLO041-09, by the “contig” column. Last, the directions of reads in each contig are assigned by
the “direction” column. Take Achl_ACHLO041-09 contig as an example. Its “forward read list” will include
Achl_ACHLO041-09_1_F, and its “reverse read list” will include Achl_ACHLO041-09_1_R.

After understanding how parameters work, please refer to Creating SangerAlignment instance from FASTA below to
see how sangeranalseR creates SangerAlignment instance.

7.9.2 Creating SangerAlignment instance from FASTA

After preparing the input directory, we can create a SangerAlignment instance by running SangerAlignment
constructor function or new method. The constructor function is a wrapper for new method and it makes instance
creation more intuitive. Their input parameters are same, and all of them have their default values. For more details
about SangerAlignment inputs and slots definition, please refer to sangeranalyseR reference manual. We will explain
two SangerAlignment instance creation methods, “regular expression matching” and “CSV file matching”.

(1) “regular expression matching” SangerAlignment creation (FASTA)

The consturctor function and new method below contain three parameters, FASTA_File,
REGEX_SuffixForward, and REGEX_SuffixReverse, that we mentioned in the previous section. In
contrast to AB1 input method, it does not include quality trimming and chromatogram visualization parameters. Run
the following code and create my_sangerAlignmentFa instance.

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",

processMethod = "REGEX",
FASTA_File = fastaFN,
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

my_sangerAlignmentFa <- new("SangerAlignment",
inputSource = "FASTA",
processMethod = "REGEX",
FASTA_File = fastaFN,
REGEX_SuffixForward = "_[0-9]*_F$",

(continues on next page)

86 Chapter 7. Documentation

https://bioconductor.org/packages/release/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

(continued from previous page)

REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

In this example, 8 reads are detected and 4 distinct SangerContig instances are created. These SangerContig instances
are stored in a “contig list” in my_sangerAlignmentFa, which will be used as the input for the following func-
tions.

Inside the R shell, you can run my_sangerAlignmentFa to get basic information of the instance or run
my_sangerAlignmentFa@objectResults@readResultTable to check the creation result of every
Sanger read after my_sangerAlignmentFa is successfully created.

Here is the output of my_sangerAlignmentFa:

SangerAlignment S4 instance
Input Source : FASTA
Process Method : REGEX

Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerAlignment/Sanger_all_reads.fa

REGEX Suffix Forward : _[0-9]*_F$
REGEX Suffix Reverse : _[0-9]*_R$

Contigs Consensus :
→˓TTATAYTTTATTYTRGGCGTCTGAGCAGGAATGGTTGGAGCYGGTATAAGACTYCTAATTCGAATYGAGCTAAGACARCCRGGAGCRTTCCTRGGMAGRGAYCAACTMTAYAATACTATYGTWACTGCWCACGCATTTGTAATAATYTTCTTTCTAGTAATRCCTGTATTYATYGGGGGRTTCGGWAAYTGRCTTYTACCTTTAATACTTGGAGCCCCYGAYATRGCATTCCCWCGACTYAACAACATRAGATTCTGACTMCTTCCCCCATCACTRATCCTTYTAGTGTCCTCTGCKGCRGTAGAAAAAGGCGCTGGWACKGGRTGAACTGTTTATCCGCCYCTAGCAAGAAATMTTGCYCAYGCMGGCCCRTCTGTAGAYTTAGCYATYTTTTCYCTTCATTTAGCGGGTGCKTCWTCWATYYTAGGGGCYATTAATTTTATYACYACWGTTATTAAYATGCGWTGAAGAGGMTTACGWCTTGAACGAATYCCMYTRTTYGTYTGAGCYGTRCTAATTACAGTKGTTCTTCTACTYCTATCYTTACCAGTGYTAGCMGGTGCMATTACYATACTWCTTACCGAYCGAAAYCTCAATACYTCMTTCTTTGATCCTGCYGGTGGTGGAGAYCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 04:33:57] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignmentFa@objectResults@readResultTable:

readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read
3 Achl_ACHLO007-09_1_F TRUE None None FASTA Forward Read
4 Achl_ACHLO007-09_2_R TRUE None None FASTA Reverse Read
5 Achl_ACHLO040-09_1_F TRUE None None FASTA Forward Read
6 Achl_ACHLO040-09_2_R TRUE None None FASTA Reverse Read
7 Achl_ACHLO041-09_1_F TRUE None None FASTA Forward Read
8 Achl_ACHLO041-09_2_R TRUE None None FASTA Reverse Read

(2) “CSV file matching” SangerAlignment creation (FASTA)

The consturctor function and new method below contain two parameters, FASTA_File, and
CSV_NamesConversion, that we mentioned in the previous section. Run the following code and create
my_sangerAlignmentFa instance.

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerAlignment", "names_
→˓conversion.csv")

(continues on next page)

7.9. Advanced User Guide - SangerAlignment (FASTA) 87

sangeranalyseR

(continued from previous page)

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",

processMethod = "CSV",
FASTA_File = fastaFN,
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

my_sangerAlignmentFa <- new("SangerAlignment",
inputSource = "FASTA",
processMethod = "CSV",
FASTA_File = fastaFN,
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓",

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = 1)

First, you need to load the CSV file into the R environment. If you are still don’t know how to prepare it, please
check (2) “CSV file matching” SangerAlignment inputs (FASTA). Then, it will follow rules in the CSV file and create
my_sangerAlignmentFa. After it’s created, inside the R shell, you can run my_sangerAlignmentFa to get
basic information of the instance or run my_sangerAlignmentFa@objectResults@readResultTable to
check the creation result of every Sanger read after my_sangerAlignmentFa is successfully created.

Here is the output of my_sangerAlignmentFa:

SangerAlignment S4 instance
Input Source : FASTA
Process Method : CSV

Fasta File Name : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerAlignment/Sanger_all_reads.fa

CSV Names Conversion : /Library/Frameworks/R.framework/Versions/4.0/Resources/
→˓library/sangeranalyseR/extdata/fasta/SangerAlignment/names_conversion.csv

Contigs Consensus :
→˓TTATAYTTTATTYTRGGCGTCTGAGCAGGAATGGTTGGAGCYGGTATAAGACTYCTAATTCGAATYGAGCTAAGACARCCRGGAGCRTTCCTRGGMAGRGAYCAACTMTAYAATACTATYGTWACTGCWCACGCATTTGTAATAATYTTCTTTCTAGTAATRCCTGTATTYATYGGGGGRTTCGGWAAYTGRCTTYTACCTTTAATACTTGGAGCCCCYGAYATRGCATTCCCWCGACTYAACAACATRAGATTCTGACTMCTTCCCCCATCACTRATCCTTYTAGTGTCCTCTGCKGCRGTAGAAAAAGGCGCTGGWACKGGRTGAACTGTTTATCCGCCYCTAGCAAGAAATMTTGCYCAYGCMGGCCCRTCTGTAGAYTTAGCYATYTTTTCYCTTCATTTAGCGGGTGCKTCWTCWATYYTAGGGGCYATTAATTTTATYACYACWGTTATTAAYATGCGWTGAAGAGGMTTACGWCTTGAACGAATYCCMYTRTTYGTYTGAGCYGTRCTAATTACAGTKGTTCTTCTACTYCTATCYTTACCAGTGYTAGCMGGTGCMATTACYATACTWCTTACCGAYCGAAAYCTCAATACYTCMTTCTTTGATCCTGCYGGTGGTGGAGAYCCCATCCTCTACCAACACTTATTCTGATTTTTTGGTCACCCTGAG
SUCCESS [2021-14-07 04:38:44] 'SangerAlignment' is successfully created!

Here is the output of my_sangerAlignmentFa@objectResults@readResultTable:

88 Chapter 7. Documentation

sangeranalyseR

readName creationResult errorType errorMessage inputSource direction
1 Achl_ACHLO006-09_1_F TRUE None None FASTA Forward Read
2 Achl_ACHLO006-09_2_R TRUE None None FASTA Reverse Read
3 Achl_ACHLO007-09_1_F TRUE None None FASTA Forward Read
4 Achl_ACHLO007-09_2_R TRUE None None FASTA Reverse Read
5 Achl_ACHLO040-09_1_F TRUE None None FASTA Forward Read
6 Achl_ACHLO040-09_2_R TRUE None None FASTA Reverse Read
7 Achl_ACHLO041-09_1_F TRUE None None FASTA Forward Read
8 Achl_ACHLO041-09_2_R TRUE None None FASTA Reverse Read

7.9.3 Writing SangerAlignment FASTA files (FASTA)

Users can write the SangerAlignment instance, my_sangerAlignmentFa, to FASTA files. There are four options
for users to choose from in selection parameter.

• reads_unalignment: Writing reads into a single FASTA file (only trimmed without alignment).

• reads_alignment: Writing reads alignment and contig read to a single FASTA file.

• contig: Writing the contig to a single FASTA file.

• all: Writing reads, reads alignment, and the contig into three different files.

Below is the oneliner for writing out FASTA files. This function mainly depends on writeXStringSet function
in Biostrings R package. Users can set the compression level through writeFasta function.

writeFasta(my_sangerAlignmentFa,
outputDir = tempdir(),
compress = FALSE,
compression_level = NA,
selection = "all")

Users can download the output FASTA file of this example through the following three links:

(1) Sanger_contigs_unalignment.fa

(2) Sanger_contigs_alignment.fa

(3) Sanger_all_trimmed_reads.fa

7.9.4 Generating SangerAlignment report (FASTA)

Last but not least, users can save SangerAlignment instance, my_sangerAlignmentFa, into a report after the
analysis. The report will be generated in HTML by knitting Rmd files.

Users can set includeSangerContig and includeSangerRead parameters to decide to which level the
SangerAlignment report will go. Moreover, after the reports are generated, users can easily navigate through reports
in different levels within the HTML file.

7.9. Advanced User Guide - SangerAlignment (FASTA) 89

https://bioconductor.org/packages/release/bioc/html/Biostrings.html

sangeranalyseR

One thing to pay attention to is that if users have many reads, it will take quite a long time to write out
all reports. If users only want to generate the contig result, remember to set includeSangerRead and
includeSangerContig to FALSE in order to save time.

generateReport(my_sangerAlignmentFa,
outputDir = tempdir(),
includeSangerRead = FALSE,
includeSangerContig = FALSE)

Here is the generated SangerAlignment html report of this example (FASTA). Users can access to ‘Basic Information’,
‘Contigs Consensus’, ‘Contigs Alignment’, ‘Contigs Tree’, and ‘Contig Reports’ sections inside it. Furthermore, users
can also navigate through html reports of all contigs and forward and reverse SangerRead in this SangerAlignment
report.

7.9.5 Code summary (SangerAlignment, FASTA)

(1) Preparing SangerAlignment FASTA inputs

rawDataDir <- system.file("extdata", package = "sangeranalyseR")
fastaFN <- file.path(rawDataDir, "fasta", "SangerAlignment", "Sanger_all_reads.fa")

(2) Creating SangerAlignment instance from FASTA

(2.1) “Regular Expression Method” SangerAlignment creation (FASTA)

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",

processMethod = "REGEX",
FASTA_File = fastaFN,
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

my_sangerAlignmentFa <- new("SangerAlignment",
inputSource = "FASTA",
processMethod = "REGEX",
FASTA_File = fastaFN,
REGEX_SuffixForward = "_[0-9]*_F$",
REGEX_SuffixReverse = "_[0-9]*_R$",
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓") (continues on next page)

90 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/FASTA/SangerAlignment/SangerAlignment_Report.html

sangeranalyseR

(continued from previous page)

Following is the R shell output that you will get.

(2.2) “CSV file matching” SangerAlignment creation (FASTA)

csv_namesConversion <- file.path(rawDataDir, "fasta", "SangerAlignment", "names_
→˓conversion.csv")

using `constructor` function to create SangerAlignment instance
my_sangerAlignmentFa <- SangerAlignment(inputSource = "FASTA",

processMethod = "CSV",
FASTA_File = fastaFN,
CSV_NamesConversion = csv_namesConversion,
refAminoAcidSeq =

→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

my_sangerAlignmentFa <- new("SangerAlignment",
inputSource = "FASTA",
processMethod = "CSV",
FASTA_File = fastaFN,
CSV_NamesConversion = csv_namesConversion,

`refAminoAcidSeq =
→˓"SRQWLFSTNHKDIGTLYFIFGAWAGMVGTSLSILIRAELGHPGALIGDDQIYNVIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLLPPALSLLLVSSMVENGAGTGWTVYPPLSAGIAHGGASVDLAIFSLHLAGISSILGAVNFITTVINMRSTGISLDRMPLFVWSVVITALLLLLSLPVLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGSLGMIYAMLAIGLLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATLHGTQLSYSPAILWALGFVFLFTVGGLTGVVLANSSVDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIHWYPLFTGLTLNNKWLKSHFIIMFIGVNLTFFPQHFLGLAGMPRRYSDYPDAYTTWNIVSTIGSTISLLGILFFFFIIWESLVSQRQVIYPIQLNSSIEWYQNTPPAEHSYSELPLLTN
→˓")

Following is the R shell output that you will get.

(3) Writing SangerAlignment FASTA files (FASTA)

writeFasta(my_sangerAlignmentFa)

Following is the R shell output that you will get.

You will get three FASTA files:

(1) Sanger_contigs_unalignment.fa

(2) Sanger_contigs_alignment.fa

(3) Sanger_all_trimmed_reads.fa

7.9. Advanced User Guide - SangerAlignment (FASTA) 91

sangeranalyseR

(4) Generating SangerAlignment report (FASTA)

generateReport(my_sangerAlignmentFa)

You can check the html report of this SangerAlignment example (FASTA).

7.10 Q & A . . .

7.10.1 What is a regular expression?

A regular expression (sometimes shortened as regex or regexp) is a sequence of characters that define a sequence
pattern matching rule, mainly used for searching and replacing. It is used in all programming languages like C++,
Python, Javascript, and in our case, R.

7.10.2 How to deal with secondary peaks

7.10.3 How to work with FASTA files for input

7.11 User Manual (functions)

Following are input parameters for SangerRead, SangerContig, and SangerAlignment constructors. For more de-
tials about other functions, please refer to the sangeranalyseR user manual.

7.11.1 SangerRead Constructor Parameters

SangerRead(inputSource = "ABIF",
readFeature = "",
readFileName = "",
fastaReadName = "",
geneticCode = GENETIC_CODE,
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE)

92 Chapter 7. Documentation

https://kuanhao-chao.github.io/sangeranalyseR_report/SangerAlignment/FASTA/SangerAlignment/SangerAlignment_Report.html
https://bioconductor.org/packages/devel/bioc/manuals/sangeranalyseR/man/sangeranalyseR.pdf

sangeranalyseR

• inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

• readFeature: The direction of the Sanger read. The value must be “Forward Read” or “Reverse Read”.

• readFileName: The absolute filename of the target ABIF or FASTA file.

• fastaReadName: If “inputSource” is “FASTA”, then this value has to be the name of the read inside the FASTA
file; if “inputSource” is “ABIF”, then this value is “NULL” by default.

• geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which repre-
sents the standard genetic code. This is the code with which the function will attempt to translate your DNA
sequences. You can get an appropriate vector with the “getGeneticCode()” function. The default is the standard
code.

• TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or
“M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm
that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

• M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default
value is “0.0001”. Otherwise, the value must be “NULL”.

• M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with
M2SlidingWindowSize.

• M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with
M2CutoffQualityScore.

• baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row.
The default value is “100”.

• heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram.
The default value is “200”.

• signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than
this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is
related to chromatogram.

• showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default
value is “TRUE”.

7.11.2 SangerContig Constructor Parameters

SangerContig(inputSource = "ABIF",
fastaFileName = "",
namesConversionCSV = NULL,
parentDirectory = "",
contigName = "",
suffixForwardRegExp = "_F.ab1",
suffixReverseRegExp = "_R.ab1",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,

(continues on next page)

7.11. User Manual (functions) 93

sangeranalyseR

(continued from previous page)

heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq = "",
minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
processorsNum = NULL)

• inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

• fastaFileName: If “inputSource” is “FASTA”, then this value has to be the name of the FASTA file; if “input-
Source” is “ABIF”, then this value is “NULL” by default.

• namesConversionCSV: The absolute filename of CSV file that provides read names following the naming
regulation. If “inputSource” is “FASTA”, then users need to prepare the csv file or make sure the original
names inside FASTA file are valid; if “inputSource” is “ABIF”, then this value is “NULL” by default.

• parentDirectory: The parent directory of all of the reads contained in ABIF format you wish to analyse. In
SangerContig, all reads must be in the first layer in this directory.

• contigName: The contig name of all the reads in “parentDirectory”.

• suffixForwardRegExp: The suffix of the filenames for forward reads in regular expression, i.e. reads that do
not need to be reverse-complemented. For forward reads, it should be “_F.ab1”.

• suffixReverseRegExp: The suffix of the filenames for reverse reads in regular expression, i.e. reads that need
to be reverse-complemented. For revcerse reads, it should be “_R.ab1”.

• TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or
“M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm
that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

• M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default
value is “0.0001”. Otherwise, the value must be “NULL”.

• M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with
M2SlidingWindowSize.

• M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with
M2CutoffQualityScore.

• baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row.
The default value is “100”.

• heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram.
The default value is “200”.

• signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than
this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is
related to chromatogram.

• showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default
value is “TRUE”.

94 Chapter 7. Documentation

sangeranalyseR

• refAminoAcidSeq: An amino acid reference sequence supplied as a string or an AAString object. If your
sequences are protein-coding DNA seuqences, and you want to have frameshifts automatically detected and
corrected, supply a reference amino acid sequence via this argument. If this argument is supplied, the sequences
are then kept in frame for the alignment step. Fwd sequences are assumed to come from the sense (i.e. coding,
or “+”) strand. The default value is “”.

• minReadsNum: The minimum number of reads required to make a consensus sequence, must be 2 or more.
The default value is “2”.

• minReadLength: Reads shorter than this will not be included in the readset. The default “20” means that all
reads with length of 20 or more will be included. Note that this is the length of a read after it has been trimmed.

• minFractionCall: Minimum fraction of the sequences required to call a consensus sequence for SangerContig
at any given position (see the ConsensusSequence() function from DECIPHER for more information). Defaults
to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

• maxFractionLost: Numeric giving the maximum fraction of sequence information that can be lost in the con-
sensus sequence for SangerContig (see the ConsensusSequence() function from DECIPHER for more informa-
tion). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information at a
given position.

• geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which repre-
sents the standard genetic code. This is the code with which the function will attempt to translate your DNA
sequences. You can get an appropriate vector with the getGeneticCode() function. The default is the standard
code.

• acceptStopCodons: The logical value “TRUE” or “FALSE”. “TRUE” (the defualt): keep all reads, regardless
of whether they have stop codons; “FALSE”: reject reads with stop codons. If “FALSE” is selected, then the
number of stop codons is calculated after attempting to correct frameshift mutations (if applicable).

• readingFrame: “1”, “2”, or “3”. Only used if “accept.stop.codons == FALSE”. This specifies the reading
frame that is used to determine stop codons. If you use a “refAminoAcidSeq”, then the frame should always be
“1”, since all reads will be shifted to frame 1 during frameshift correction. Otherwise, you should select the
appropriate reading frame.

• processorsNum: The number of processors to use, or NULL (the default) for all available processors.

7.11.3 SangerAlignment Constructor Parameters

SangerAlignment(inputSource = "ABIF",
fastaFileName = "",
namesConversionCSV = NULL,
parentDirectory = "",
suffixForwardRegExp = "_F.ab1",
suffixReverseRegExp = "_R.ab1",
TrimmingMethod = "M1",
M1TrimmingCutoff = 0.0001,
M2CutoffQualityScore = NULL,
M2SlidingWindowSize = NULL,
baseNumPerRow = 100,
heightPerRow = 200,
signalRatioCutoff = 0.33,
showTrimmed = TRUE,
refAminoAcidSeq = "",

(continues on next page)

7.11. User Manual (functions) 95

sangeranalyseR

(continued from previous page)

minReadsNum = 2,
minReadLength = 20,
minFractionCall = 0.5,
maxFractionLost = 0.5,
geneticCode = GENETIC_CODE,
acceptStopCodons = TRUE,
readingFrame = 1,
minFractionCallSA = 0.5,
maxFractionLostSA = 0.5,
processorsNum = NULL)

• inputSource: The input source of the raw file. It must be “ABIF” or “FASTA”. The default value is “ABIF”.

• fastaFileName: If “inputSource” is “FASTA”, then this value has to be the name of the FASTA file; if “input-
Source” is “ABIF”, then this value is “NULL” by default.

• namesConversionCSV: The file path to the CSV file that provides read names that follow the naming regulation.
If “inputSource” is “FASTA”, then users need to prepare the csv file or make sure the original names inside
FASTA file are valid; if “inputSource” is “ABIF”, then this value is “NULL” by default.

• parentDirectory: The parent directory of all of the reads contained in ABIF format you wish to analyse. In
SangerContig, all reads must be in the first layer in this directory.

• suffixForwardRegExp: The suffix of the filenames for forward reads in regular expression, i.e. reads that do
not need to be reverse-complemented. For forward reads, it should be “_F.ab1”.

• suffixReverseRegExp: The suffix of the filenames for reverse reads in regular expression, i.e. reads that need
to be reverse-complemented. For revcerse reads, it should be “_R.ab1”.

• TrimmingMethod: The read trimming method for the SangerRead. The value must be “M1” (the default) or
“M2”, which represents “method 1” or “method 2” respectively. M1 is the modified Mott’s trimming algorithm
that can also be found in Phred/Phrap and Biopython. M2 is like trimmomatic’s sliding window method.

• M1TrimmingCutoff: The cutoff for the trimming method 1. If TrimmingMethod is “M1”, then the default
value is “0.0001”. Otherwise, the value must be “NULL”.

• M2CutoffQualityScore: The trimming cutoff quality score for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “20”. Otherwise, the value must be “NULL”. This parameter works with
M2SlidingWindowSize.

• M2SlidingWindowSize: The trimming sliding window size for the trimming method 2. If TrimmingMethod
is “M2”, then the default value is “10”. Otherwise, the value must be “NULL”. This parameter works with
M2CutoffQualityScore.

• baseNumPerRow: This parameter is related to chromatogram and defines maximum base pairs in each row.
The default value is “100”.

• heightPerRow: This parameter is related to chromatogram and defines the height of each row in chromatogram.
The default value is “200”.

• signalRatioCutoff: The ratio of the height of a secondary peak to a primary peak. Secondary peaks higher than
this ratio are annotated. Those below the ratio are excluded. The default value is “0.33”. This parameter is
related to chromatogram.

• showTrimmed: The logical value storing whether to show trimmed base pairs in chromatogram. The default
value is “TRUE”.

• refAminoAcidSeq: An amino acid reference sequence supplied as a string or an AAString object. If your
sequences are protein-coding DNA seuqences, and you want to have frameshifts automatically detected and
corrected, supply a reference amino acid sequence via this argument. If this argument is supplied, the sequences

96 Chapter 7. Documentation

sangeranalyseR

are then kept in frame for the alignment step. Fwd sequences are assumed to come from the sense (i.e. coding,
or “+”) strand. The default value is “”.

• minReadsNum: The minimum number of reads required to make a consensus sequence, must be 2 or more.
The default value is “2”.

• minReadLength: Reads shorter than this will not be included in the readset. The default “20” means that all
reads with length of 20 or more will be included. Note that this is the length of a read after it has been trimmed.

• minFractionCall: Minimum fraction of the sequences required to call a consensus sequence for SangerContig
at any given position (see the ConsensusSequence() function from DECIPHER for more information). Defaults
to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

• maxFractionLost: Numeric giving the maximum fraction of sequence information that can be lost in the con-
sensus sequence for SangerContig (see the ConsensusSequence() function from DECIPHER for more informa-
tion). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information at a
given position.

• geneticCode: Named character vector in the same format as “GENETIC_CODE” (the default), which repre-
sents the standard genetic code. This is the code with which the function will attempt to translate your DNA
sequences. You can get an appropriate vector with the getGeneticCode() function. The default is the standard
code.

• acceptStopCodons: The logical value “TRUE” or “FALSE”. “TRUE” (the defualt): keep all reads, regardless
of whether they have stop codons; “FALSE”: reject reads with stop codons. If “FALSE” is selected, then the
number of stop codons is calculated after attempting to correct frameshift mutations (if applicable).

• readingFrame: “1”, “2”, or “3”. Only used if “accept.stop.codons == FALSE”. This specifies the reading
frame that is used to determine stop codons. If you use a “refAminoAcidSeq”, then the frame should always be
“1”, since all reads will be shifted to frame 1 during frameshift correction. Otherwise, you should select the
appropriate reading frame.

• minFractionCallSA: Minimum fraction of the sequences required to call a consensus sequence for Sanger-
Alignment at any given position (see the ConsensusSequence() function from DECIPHER for more informa-
tion). Defaults to 0.75 implying that 3/4 of all reads must be present in order to call a consensus.

• maxFractionLostSA: Numeric giving the maximum fraction of sequence information that can be lost in the
consensus sequence for SangerAlignment (see the ConsensusSequence() function from DECIPHER for more
information). Defaults to 0.5, implying that each consensus base can ignore at most 50 percent of the information
at a given position.

• processorsNum: The number of processors to use, or NULL (the default) for all available processors.

7.12 Frequently Asked Questions

7.12.1 Q: What is the difference between two different trimming methods?

A: In sangeranalyseR, we provide two trimming methods, “M1” (the default) or “M2”, which represents “method 1”
or “method 2” respectively. M1 is the modified Mott’s trimming algorithm that can also be found in Phred/Phrap and
Biopython. M2 is like trimmomatic’s sliding window method. If you want to set M1 as your trimming method, you
need to assign “TrimmingMethod” to “M1” and “M1TrimmingCutoff” as the threshold that you want. Its default
value is “0.0001”. In contrast, you can assign “TrimmingMethod” to “M2” if you want to set M2 as your trimming
method. “M2CutoffQualityScore” and “M2SlidingWindowSize” are two parameters that control M2 trimming and
their default values are “20” and “10” respectively.

7.12. Frequently Asked Questions 97

sangeranalyseR

7.13 Conclusion

sangeranalyseR provides a new approach to do Sanger sequencing data analysis in R. The main features include well-
structured S4 classes, automated data analysis, interactive Shiny apps, exporting reads to FASTA and the generation
thorough report. We hope it will be helpful for R users and the bioinformatics community!

7.14 License

MIT License

Copyright (c) 2019 Kuan-Hao Chao

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

7.15 Contact

Contact here:

For now, please just use the issue tracker on GitHub for all contacts. That will help us keep up to date with things.

7.16 Help

If you need any help, feel free to contact me <kuanhao.chao@gmail.com>

7.16.1 Inside help test

98 Chapter 7. Documentation

mailto:kuanhao.chao@gmail.com

	Why sangeranalyseR
	Main features
	What sangeranalyseR doesn’t do
	User Manual
	User support
	Key contributors
	Documentation
	Installation
	System requirements
	Install from Bioconductor
	Install the development version
	Where to go from here ?

	Quick Start Guide
	Super-Quick Start (3 lines of code)
	Step 1: Prepare your input files
	Step 2: Load and analyse your data
	Step 3 (optional): Explore your data
	Step 4: Output your aligned contigs
	Step 5 (optional): Generate an interactive report
	A Reproducible Example

	Beginners Guide
	Step 1: Preparing your input files
	Step 2: Loading and analysing your data
	Step 3: Exploring your data with the Shiny app
	Step 4: Outputting your aligned contigs
	Step 5: Generating an interactive report
	What’s next ?

	Advanced User Guide - SangerRead (AB1)
	Preparing SangerRead AB1 input
	Creating SangerRead instance from AB1
	Visualizing SangerRead trimmed read
	Updating SangerRead quality trimming parameters
	Writing SangerRead FASTA file (AB1)
	Generating SangerRead report (AB1)
	Code summary (SangerRead, ab1)

	Advanced User Guide - SangerContig (AB1)
	Preparing SangerContig AB1 inputs
	Creating SangerContig instance from AB1
	Updating SangerContig quality trimming parameters
	Launching SangerContig Shiny app
	Writing SangerContig FASTA files (AB1)
	Generating SangerContig report (AB1)
	Code summary (SangerContig, AB1)

	Advanced User Guide - SangerAlignment (AB1)
	Preparing SangerAlignment AB1 input
	Creating SangerAlignment instance from AB1
	Updating SangerAlignment quality trimming parameters
	Launching SangerAlignment Shiny app
	Writing SangerAlignment FASTA files (AB1)
	Generating SangerAlignment report (AB1)
	Code summary (SangerAlignment, AB1)

	Advanced User Guide - SangerRead (FASTA)
	Preparing SangerRead FASTA input
	Creating SangerRead instance from FASTA
	Writing SangerRead FASTA files (FASTA)
	Generating SangerRead report (FASTA)
	Code summary (SangerRead, fasta)

	Advanced User Guide - SangerContig (FASTA)
	Preparing SangerContig FASTA input
	Creating SangerContig instance from FASTA
	Writing SangerContig FASTA files (FASTA)
	Generating SangerContig report (FASTA)
	Code summary (SangerContig, FASTA)

	Advanced User Guide - SangerAlignment (FASTA)
	Preparing SangerAlignment FASTA input
	Creating SangerAlignment instance from FASTA
	Writing SangerAlignment FASTA files (FASTA)
	Generating SangerAlignment report (FASTA)
	Code summary (SangerAlignment, FASTA)

	Q & A …
	What is a regular expression?
	How to deal with secondary peaks
	How to work with FASTA files for input

	User Manual (functions)
	SangerRead Constructor Parameters
	SangerContig Constructor Parameters
	SangerAlignment Constructor Parameters

	Frequently Asked Questions
	Q: What is the difference between two different trimming methods?

	Conclusion
	License
	Contact
	Help
	Inside help test

